题目:https://www.acwing.com/problem/content/227/

题意:给你n,k,m,然后输入一个n阶矩阵A,让你求  S=A+A^2+A^3.+......+A^k

思路:首先因为A是矩阵,我们k的范围很大,那么很明显看出A^k可以用矩阵快速幂来计算,但是这样我们只能算出其中一项,还是有k项,那么我们怎么计算和呢

我们可以看出前一项和后一项是有关联的,就是乘了一个A,我们怎么利用前面计算的结果呢,On遍历肯定不行,既然我们用到了遍历,那么优化我们很容易想到二分

假设我们    A+A^2+A^3+A^4+A^5+A^6

那么可以利用类似分治的方法,一直这样二分递归下去,然后我们自底向上,以左子树推出又子树,这样就能得到最终的答案

#include<bits/stdc++.h>
using namespace std;
#define MAXN 35
typedef long long ll;
int n,mod;
struct mat
{
ll m[MAXN][MAXN];//矩阵结构体
}unit;//unit为单位矩阵,即主对角线全部为1,这样任何矩阵与单位矩阵相乘都为它本身 mat msub(mat a,mat b)//矩阵相乘函数
{
mat ret;
ll x;
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
x=;
for(int k=;k<n;k++)
{
x+=((a.m[i][k]*b.m[k][j])%mod);//取余
}
ret.m[i][j]=x%mod;//取余
}
}
return ret;
}
mat add(mat a,mat b)//矩阵相乘函数
{
mat ret;
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
ret.m[i][j]=(a.m[i][j]+b.m[i][j])%mod;
}
}
return ret;
} void init_unit()//初始化单位矩阵
{
for(int i=;i<MAXN;i++)
{
unit.m[i][i]=;
}
} mat qpow(mat a,ll x)//快速幂
{
mat ans=unit;
while(x)
{
if(x&) ans=msub(ans,a);
a=msub(a,a);
x>>=;
}
return ans;
} mat sum(mat a,ll k){
if(k==) return a;
mat w=sum(a,k/);
if(k%){
mat ans=qpow(a,k/+);
ans=add(ans,msub(ans,w));
return add(w,ans);
}
else{
mat ans=qpow(a,k/);
return add(w,msub(ans,w));
}
}
int main()
{
ll x;
init_unit();
cin>>n>>x>>mod;
mat a,ans;
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
cin>>a.m[i][j];
}
}
ans=sum(a,x);
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
if(j!=n-) cout<<ans.m[i][j]<<" ";
else cout<<ans.m[i][j]<<endl;
}
}
return ;
}

AcWing 225. 矩阵幂求和 (矩阵快速幂+分治)打卡的更多相关文章

  1. 【模拟题(电子科大MaxKU)】解题报告【树形问题】【矩阵乘法】【快速幂】【数论】

    目录: 1:一道简单题[树形问题](Bzoj 1827 奶牛大集会) 2:一道更简单题[矩阵乘法][快速幂] 3:最简单题[技巧] 话说这些题目的名字也是够了.... 题目: 1.一道简单题 时间1s ...

  2. 2019河北省大学生程序设计竞赛(重现赛)B 题 -Icebound and Sequence ( 等比数列求和的快速幂取模)

    题目链接:https://ac.nowcoder.com/acm/contest/903/B 题意: 给你 q,n,p,求 q1+q2+...+qn 的和 模 p. 思路:一开始不会做,后面查了下发现 ...

  3. 乘方快速幂 OR 乘法快速幂

    关于快速幂这个算法,已经不想多说,很早也就会了这个算法,但是原来一直靠着模板云里雾里的,最近重新学习,发现忽视了一个重要的问题,就是若取模的数大于int型,即若为__int64的时候应该怎么办,这样就 ...

  4. 51 Nod 1013 3的幂的和 矩阵链乘法||逆元+快速幂

    这道题我写了两种写法 一种利用逆元 a/b%mod=a*c%mod; (c是b的逆元)易得2的逆元就是5~~~04: 一种是矩阵快速幂 利用递推式得出结论 #include<cstdio> ...

  5. 【矩阵乘法】【快速幂】【递推】斐波那契数列&&矩乘优化递推模板

    题目大意: F[0]=0 F[1]=1 F[n+2]=F[n+1]+F[n] 求F[n] mod 104. F[n+2] F[n+1] = 1 1 1 0 * F[n+1] F[n] 记这个矩阵为A, ...

  6. Educational Codeforces Round 13——D. Iterated Linear Function(矩阵快速幂或普通快速幂水题)

      D. Iterated Linear Function time limit per test 1 second memory limit per test 256 megabytes input ...

  7. CodeForces Round #191 (327C) - Magic Five 等比数列求和的快速幂取模

    很久以前做过此类问题..就因为太久了..这题想了很久想不出..卡在推出等比的求和公式,有除法运算,无法快速幂取模... 看到了 http://blog.csdn.net/yangshuolll/art ...

  8. 51nod 1013 3的幂的和 - 快速幂&除法取模

    题目地址:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1013 Konwledge Point: 快速幂:https:/ ...

  9. 51Nod 1013 3的幂的和 快速幂 | 乘法逆元 | 递归求和公式

    1.乘法逆元 直接使用等比数列求和公式,注意使用乘法逆元 ---严谨,失细节毁所有 #include "bits/stdc++.h" using namespace std; #d ...

  10. Codeforces 963A Alternating Sum(等比数列求和+逆元+快速幂)

    题目链接:http://codeforces.com/problemset/problem/963/A 题目大意:就是给了你n,a,b和一段长度为k的只有'+'和‘-’字符串,保证n+1被k整除,让你 ...

随机推荐

  1. Tortoise git账号记住密码

    方法一: 本地git仓库目录下,找到 .git/config ,然后打开增加: [credential] helper = store 这样只有该目录下的git操作不用每次输入用户名和密码,换一个目录 ...

  2. BZOJ 2281: [Sdoi2011]黑白棋(dp+博弈论)

    传送门 解题思路 首先发现可以把相邻的黑白棋子之间的距离看成一堆棋子,那么这个就可以抽象成\(Nim\)游戏每次可以取\(d\)堆这个游戏,而这个游戏的\(SG\)值为\(x\%(d+1)\),那么题 ...

  3. 专为渗透测试人员设计的 Python 工具大合集

    如果你对漏洞挖掘.逆向工程分析或渗透测试感兴趣的话,我第一个要推荐给你的就是Python编程语言.Python不仅语法简单上手容易,而且它还有大量功能强大的库和程序可供我们使用.在这篇文章中,我们会给 ...

  4. 正确设置nginx/php-fpm/apache权限 提高网站安全性 防止被挂木马

    核心总结:php-fpm/apache 进程所使用的用户,不能是网站文件所有者. 凡是违背这个原则,则不符合最小权限原则. 根据生产环境不断反馈,发现不断有 php网站被挂木马,绝大部分原因是因为权限 ...

  5. [CSP-S模拟测试]:小奇的仓库(warehouse)(树形DP)

    题目背景 小奇采的矿实在太多了,它准备在喵星系建个矿石仓库.令它无语的是,喵星系的货运飞船引擎还停留在上元时代! 题目描述 喵星系有$n$个星球,星球以及星球间的航线形成一棵树.从星球$a$到星球$b ...

  6. spring声明式的事务管理

    spring支持声明式事务管理和编程式事务管理两种方式. 编程式事务使用TransactionTemplate来定义,可在代码级别对事务进行定义. 声明式事务基于aop来实现,缺点是其最细粒度的事务声 ...

  7. C#链接mysql出现 One of the identified items was in an invalid format

    这个问题在tolist查询结果的时候就会出现但是count就不会出现,后来才发现是数据生成工具生成出来的ID有问题导致的,只要保证iD不重复并且按照指定的类型建立ID就可以了

  8. iOS开发环境搭建 及 编写1个hello world

    参照: https://www.cnblogs.com/ansersion/p/9084460.html 前置条件 : MAC一台 安装xcode,从appstore 下载 xcode,(6G多,考验 ...

  9. 配置github的pull request触发jenkins自动构建

    参照: https://www.cnblogs.com/zanjiahaoge666/p/6402738.html 之前的配置,都是向master分支push操作触发jenkins进行构建,但是在一般 ...

  10. 让Tomcat支持php

    在服务器上php的安装:1.下载php-4.4.2 for windows的压缩包2.解压缩到D:\software\php4423.将D:\software\php442增加到环境变量PATH中4. ...