如题。$N \leqslant 5000$。


感觉自己思路永远都是弯弯绕绕的。。即使会做也会被做繁掉。。果然还是我太菜了。


递减不爽,先倒序输入算了。第一问做个LIS没什么说的。第二问统计个数,考虑什么时候是重复计算的。$g[i]$表示第$i$个数结尾的LIS长度的方案(不重复)。当统计时dp到一个数时显然从前面满足$f_j+1=f_i且A_j<A_i$条件的累加过来,$A_j$不同的时候,自然不会有重复;当有相同的数且f一样时,如果这几种都加入,就重复了。而相同的几个数字显然靠后的方案统计到的更多,所以每次只取最靠右的那个数累加上去即可。实现上,开一个桶,记录vis,结束后再吐出来。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define dbg(x) cerr<<#x<<" = "<<x<<endl
#define _dbg(x,y) cerr<<#x<<" = "<<x<<" "<<#y<<" = "<<y<<endl
using namespace std;
typedef long long ll;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=+,M=<<,INF=0x3f3f3f3f;
int f[N],g[N],lis[N],a[N],vis[M],bin[N];
int n,len,ans,tot,cnt; int main(){//freopen("test.in","r",stdin);//freopen("test.out","w",stdout);
read(n);for(register int i=;i<=n;++i)read(a[n-i+]);
lis[len=]=INF;
for(register int i=;i<=n;++i){
f[i]=lower_bound(lis+,lis+len+,a[i])-lis;
if(f[i]>len)lis[++len]=a[i];else lis[f[i]]=a[i];
MAX(ans,f[i]);
}
for(register int i=;i<=n;++i){
if(f[i]==){g[i]=;continue;}
for(register int j=i-;j;--j)if(!vis[a[j]]&&a[j]<a[i]&&f[j]+==f[i])vis[bin[++tot]=a[j]]=,g[i]+=g[j];
while(tot)vis[bin[tot--]]=;
}
for(register int i=n;i;--i) if(!vis[a[i]]&&f[i]==ans)cnt+=g[i],vis[a[i]]=;
printf("%d %d\n",ans,cnt);
return ;
}

嗯这个是本人极其繁琐的想法。发现自己傻了有没有。。而且数据大的话桶不就挂了吗。。所以依据原来思路,改变对于dp状态的定义。$g[i]$表示第$i$个数结尾的长度为LIS的方案数,且不包括之前所有和自己相同且$len_{LIS}$相同的数的方案。这样每次转移时遇到相同即break。保证取的决策一定来源于上一个相同数和现在这个数之间。具体还是看code吧。。

另外还有一种做法是网络流。。不想写了QwQ。  ←不行,建边都会建炸掉

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define dbg(x) cerr<<#x<<" = "<<x<<endl
#define _dbg(x,y) cerr<<#x<<" = "<<x<<" "<<#y<<" = "<<y<<endl
using namespace std;
typedef long long ll;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=+,M=<<,INF=0x3f3f3f3f;
int f[N],g[N],lis[N],a[N];
int n,len,ans,tot,cnt; int main(){//freopen("test.in","r",stdin);//freopen("test.out","w",stdout);
read(n);for(register int i=;i<=n;++i)read(a[n-i+]);
lis[len=]=INF;
for(register int i=;i<=n;++i){
f[i]=lower_bound(lis+,lis+len+,a[i])-lis;
if(f[i]>len)lis[++len]=a[i];else lis[f[i]]=a[i];
MAX(ans,f[i]);
}
g[]=;
for(register int i=;i<=n;++i){
for(register int j=i-;~j;--j){
if(a[i]==a[j]&&f[i]==f[j])break;
if(f[i]==f[j]+&&a[j]<a[i])g[i]+=g[j];
}
}
for(register int i=;i<=n;++i)if(f[i]==ans)cnt+=g[i];
printf("%d %d\n",ans,cnt);
return ;
}

poj1952 BUY LOW, BUY LOWER[线性DP(统计不重复LIS方案)]的更多相关文章

  1. poj1952 BUY LOW, BUY LOWER【线性DP】【输出方案数】

    BUY LOW, BUY LOWER Time Limit: 1000MS   Memory Limit: 30000K Total Submissions:11148   Accepted: 392 ...

  2. POJ-1952 BUY LOW, BUY LOWER(线性DP)

    BUY LOW, BUY LOWER Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9244 Accepted: 3226 De ...

  3. [POJ1952]BUY LOW, BUY LOWER

    题目描述 Description The advice to "buy low" is half the formula to success in the bovine stoc ...

  4. USACO Section 4.3 Buy low,Buy lower(LIS)

    第一眼看到题目,感觉水水的,不就是最长下降子序列嘛!然后写……就呵呵了..要判重,还要高精度……判重我是在计算中加入各种判断.这道题比看上去麻烦一点,但其实还好吧.. #include<cstd ...

  5. 洛谷P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower

    P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower 题目描述 “逢低吸纳”是炒股的一条成功秘诀.如果你想成为一个成功的投资者,就要遵守这条秘诀: "逢低吸纳,越低越 ...

  6. POJ 1952 BUY LOW, BUY LOWER 动态规划题解

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

  7. Buy Low, Buy Lower

    Buy Low, Buy Lower 给出一个长度为N序列\(\{a_i\}\),询问最长的严格下降子序列,以及这样的序列的个数,\(1 <= N <= 5000\). 解 显然我们可以很 ...

  8. USACO 4.3 Buy Low, Buy Lower

    Buy Low, Buy Lower The advice to "buy low" is half the formula to success in the stock mar ...

  9. BUY LOW, BUY LOWER_最长下降子序列

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

随机推荐

  1. Golang- import 导入包的几种方式:点,别名与下划线

    包的导入语法 在写Go代码的时候经常用到import这个命令用来导入包文件,看到的方式参考如下: import( "fmt" ) 然后在代码里面可以通过如下的方式调用 fmt.Pr ...

  2. php配置php-fpm启动参数及配置详

    php-fpm 启动参数及重要配置详解 约定几个目录 /usr/local/php/sbin/php-fpm/usr/local/php/etc/php-fpm.conf/usr/local/php/ ...

  3. keys随机生成

    随机keys生成 const fs=require('fs'); const KEY_LEN=1024; const KEY_COUNT=2048; const CHARS='abcdefghijkl ...

  4. SpringBoot上传文件

    1.pom文件 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w ...

  5. 牛客小白月赛14 -B (逆元求组合数)

    题目链接:https://ac.nowcoder.com/acm/contest/879/B 题意:题目意思就是求ΣC(n,i)pi(MOD+1-p)n-i (k<=i<=n),这里n,i ...

  6. 什么是云数据库POLARDB

    POLARDB是阿里巴巴自主研发的下一代关系型分布式云原生数据库,目前兼容三种数据库引擎:MySQL.Oracle.PostgreSQL.计算能力最高可扩展至1000核以上,存储容量最高可达 100T ...

  7. Postgresql 监控sql之 pg_stat_statements模块

    postgresql.confpg_stat_statements.max = 1000000pg_stat_statements.track = allpg_stat_statements.trac ...

  8. 认识并学会springCloud的使用

    SpringCloud将现在一些流行的技术整合到一起,实现如:配置管理,服务发现,智能路由,负载均衡,熔断器,控制总线,集群状态等等功能.主要涉及的组件有 netflix Eureka:注册中心 Zu ...

  9. CF 1133C Balanced Team

    题目链接:http://codeforces.com/problemset/problem/1133/C 题目分析 (个人感受:我看错了题目,硬是写了近一个小时!) 这个题目要求一个最长的序列,使得这 ...

  10. Django 模版语法与使用

    目录 Django 模版语法与使用 django模板语言介绍 (摘自官方文档) 链接 什么是模板? 模板语句的 注释 变量 {{ 变量 }} 点(.)在模板语言中有特殊的含义,用来获取对象的相应属性值 ...