SPOJ 694 || 705 Distinct Substrings ( 后缀数组 && 不同子串的个数 )
题意 : 对于给出的串,输出其不同长度的子串的种类数
分析 : 有一个事实就是每一个子串必定是某一个后缀的前缀,换句话说就是每一个后缀的的每一个前缀都代表着一个子串,那么如何在这么多子串or后缀的前缀中找出不同的并计数呢?思路就是所有的可能子串数 - 重复的子串数。首先我们容易得到一个长度为 len 的串的子串数为 len * ( len + 1) / 2。那如何知道重复的子串数呢?答案就是利用后缀数组去跑一遍 Height ,得到所有的最长公共前缀(LCP),这些最长公共前缀的值都存在了 Height 中,对于任意两个后缀的最长公共前缀长度实际就是重复出现的子串数,那么只要遍历一遍 Height 数组,用刚刚得出来的总子串数减去所有的 Height 值即可
#include<bits/stdc++.h> using namespace std; ; int sa[maxn],s[maxn],wa[maxn], wb[maxn], Ws[maxn], wv[maxn]; int Rank[maxn], height[maxn]; bool cmp(int r[], int a, int b, int l){ return r[a] == r[b] && r[a+l] == r[b+l]; } void da(int r[], int sa[], int n, int m) { int i, j, p, *x = wa, *y = wb; ; i < m; ++i) Ws[i] = ; ; i < n; ++i) Ws[x[i]=r[i]]++; ; i < m; ++i) Ws[i] += Ws[i-]; ; i >= ; --i) sa[--Ws[x[i]]] = i; , p = ; p < n; j *= , m = p) { , i = n - j; i < n; ++i) y[p++] = i; ; i < n; ++i) if (sa[i] >= j) y[p++] = sa[i] - j; ; i < n; ++i) wv[i] = x[y[i]]; ; i < m; ++i) Ws[i] = ; ; i < n; ++i) Ws[wv[i]]++; ; i < m; ++i) Ws[i] += Ws[i-]; ; i >= ; --i) sa[--Ws[wv[i]]] = y[i]; , x[sa[]] = , i = ; i < n; ++i) x[sa[i]] = cmp(y, sa[i-], sa[i], j) ? p- : p++; } } void calheight(int r[], int sa[], int n) { ; ; i <= n; ++i) Rank[sa[i]] = i; ; i < n; height[Rank[i++]] = k) , j = sa[Rank[i]-]; r[i+k] == r[j+k]; k++); } char SS[maxn]; int S[maxn]; int main(void) { int nCase; scanf("%d", &nCase); while(nCase--){ scanf("%s", SS); int len = strlen(SS); ; i<len; i++) S[i] = (int)SS[i]; S[len] = ; da(S, sa, len+, ); calheight(S, sa, len); long long tmp = len; )) / ; ; i<=len; i++) ans -= height[i];//or ans += len - i - height[Rank[i]]; printf("%lld\n", ans); } ; }
SPOJ 694 || 705 Distinct Substrings ( 后缀数组 && 不同子串的个数 )的更多相关文章
- 【SPOJ 694】Distinct Substrings 不相同的子串的个数
不会FQ啊,没法评测啊,先存一下代码QAQ 2016-06-16神犇Menci帮我测过AC了,谢谢神犇Menci QwQ #include<cstdio> #include<cstr ...
- SPOJ - SUBST1 New Distinct Substrings —— 后缀数组 单个字符串的子串个数
题目链接:https://vjudge.net/problem/SPOJ-SUBST1 SUBST1 - New Distinct Substrings #suffix-array-8 Given a ...
- SPOJ - DISUBSTR Distinct Substrings (后缀数组)
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
- 【SPOJ – SUBST1】New Distinct Substrings 后缀数组
New Distinct Substrings 题意 给出T个字符串,问每个字符串有多少个不同的子串. 思路 字符串所有子串,可以看做由所有后缀的前缀组成. 按照后缀排序,遍历后缀,每次新增的前缀就是 ...
- SPOJ DISUBSTR Distinct Substrings 后缀数组
题意:统计母串中包含多少不同的子串 然后这是09年论文<后缀数组——处理字符串的有力工具>中有介绍 公式如下: 原理就是加上新的,减去重的,这题是因为打多校才补的,只能说我是个垃圾 #in ...
- spoj Distinct Substrings 后缀数组
给定一个字符串,求不相同的子串的个数. 假如给字符串“ABA";排列的子串可能: A B A AB BA ABA 共3*(3+1)/2=6种; 后缀数组表示时: A ABA BA 对于A和 ...
- SPOJ 694&&SPOJ705: Distinct Substrings
DISUBSTR - Distinct Substrings 链接 题意: 询问有多少不同的子串. 思路: 后缀数组或者SAM. 首先求出后缀数组,然后从对于一个后缀,它有n-sa[i]-1个前缀,其 ...
- [spoj694&spoj705]New Distinct Substrings(后缀数组)
题意:求字符串中不同子串的个数. 解题关键:每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数. 1.总数减去height数组的和即可. 注意这里height中为什么不需 ...
- 【SPOJ 694】Distinct Substrings
[链接]h在这里写链接 [题意] 给你一个长度最多为1000的字符串 让你求出一个数x,这个x=这个字符串的不同子串个数; [题解] 后缀数组题. 把原串复制一份,加在 ...
随机推荐
- Java之Swing体系——制作自己的登录界面
我们制作登陆界面是简单的图形模式,并不具备其他功能: 这里使用两个库,如下: javax.swing.*; java.awt.*; 构造窗体对象要用到很多类,废话不多,直接代码~ package co ...
- python 使用 with open() as 读写文件
读文件: 要以读文件的模式打开一个文件对象,使用Python内置的open()函数,传入文件名和标示符: >>> f = open('E:\python\python\test.tx ...
- 社工 - By浏览器 - Google搜索技巧 - 汇总
google基本语法 Index of: 使用它可以直接进入网站首页下的所有文件和文件夹中 intext: 将返回所有在网页正文部分包含关键词的网页 intitle: 将返回所有网页标题中包含关键词的 ...
- Android——LruCache源码解析
以下针对 Android API 26 版本的源码进行分析. 在了解LruCache之前,最好对LinkedHashMap有初步的了解,LruCache的实现主要借助LinkedHashMap.Lin ...
- 第四周课程总结与第二次实验报告(Java简单类与对象)
1.写一个名为Rectangle的类表示矩形.其属性包括宽width.高height和颜色color,width和height都是double型的,而color则是String类型的.要求该类具有: ...
- 字符串中的replace方法
String.prototype.replace() 该方法作为字符串中非常常用的方法, 今天我们具体介绍一下它的用法 语法格式 someString.replace(regxp | substr, ...
- JAVA poi设置单元格背景颜色
import java.io.FileOutputStream; import java.io.IOException; import org.apache.poi.ss.usermodel.Ce ...
- select count(*) 底层到底干了啥?
作者:贾春生,http://dwz.win/myg SELECT COUNT( * ) FROM TABLE 是个再常见不过的 SQL 需求了. 在 MySQL 的使用规范中,我们一般使用事务引擎 I ...
- 树形dp相关
前言 1:与树或图的生成树相关的动态规划. 2:以每棵子树为子结构,在父亲节点合并,注意树具有天然的子结构.这是很优美的很利于dp的. 3:巧妙利用Bfs或Dfs序,可以优化问题,或得到好的解决方法. ...
- OC(构造函数,分类等知识总结)
文章来源:http://my.oschina.net/luoguankun/blog/219532 一.成员变量的作用域 · @public · 在任何地方都能直接访问对象 ...