AdaBoost(Adaptive boosting)元算法

元算法:将不同分类器组合起来的结果,也叫集成方法。

AdaBoost优点:泛化错误率,易编码,可应用在大部分分类器,无参数调整;缺点:对离群点敏感;适用于:数值型和标称型。

  • 自举汇聚法(Bootstrap aggregating,

    bagging方法):从原始数据集中随机选择1个样本,然后随机选择另一个样本替换这个样本。对原始数据集中进行S次这样的操作,分别得到S个新数据集。某个学习算法分别作用于新数据集得到S个分类器。用S个分类器进行分类得到的投票结果中最多的类别作为最终的分类结果。(bagging中各分类器权重是相等的。)

  • Boosting:boosting通过集中关注被已有分类器错分的那些数据获得新的分类器。其中分类器权重不相等,对应分类器在上一代迭代中的成功度\(\alpha\)。

    • 每个样本的权重的向量D初始化:全为1/m

    • 在原数据集上训练出一个弱分类器并计算其错误率\(\varepsilon_{1}\);

    • 原数据集中分对的样本权重降低,分错的样本权重升高,计算累计加权的估计结果

    \[\ \alpha = \frac{1}{2}\ln{(\frac{1 - \varepsilon_{i}}{\varepsilon_{i}})}
    \]

    \[D_{i}^{\text{new}} = \left\{ \begin{matrix} \frac{D_{i}^{\text{old}}e^{-
    \]

\frac{D_{i}{\text{old}}e{\alpha}}{Sum(D)},\ \ if\ \mathbf{x}_{i}\text{

is\ devided\ wrongly} \ \end{matrix} \right.$$

  • 重复b-c共?次,得到累计加权的估计结果,其符号即表示最终的分类结果。

建立弱分类器的伪代码:

将最小错误率minError设为$+ \infty$
对数据集中的每一个特征(第一层循环):
对每个步长(第二层循环):
对每个不等号(第三层循环):
建立一棵单层决策树并利用加权数据集对他进行测试
如果错误率低于minError,则将当前单层决策树设为最佳单层决策树
返回最佳单层决策树

AdaBoost算法的伪代码:

对每次迭代:
找到最佳的单层决策树,将其加入到单层决策树数组
计算$\alpha$,计算新的样本权重向量D
**更新累计类别估计值**
如果错误率等于0.0,退出循环

机器学习实战笔记-7-AdaBoost元算法的更多相关文章

  1. 机器学习实战笔记7(Adaboost)

    1:简单概念描写叙述 Adaboost是一种弱学习算法到强学习算法,这里的弱和强学习算法,指的当然都是分类器,首先我们须要简介几个概念. 1:弱学习器:在二分情况下弱分类器的错误率会低于50%. 事实 ...

  2. 机器学习实战笔记(1)——k-近邻算法

    机器学习实战笔记(1) 1. 写在前面 近来感觉机器学习,深度学习神马的是越来越火了,从AlphaGo到Master,所谓的人工智能越来越NB,而我又是一个热爱新潮事物的人,于是也来凑个热闹学习学习. ...

  3. 机器学习实战笔记-11-Apriori与FP-Growth算法

    Apriori算法 优点:易编码实现:缺点:大数据集上较慢:适用于:数值型或标称型数据. 关联分析:寻找频繁项集(经常出现在一起的物品的集合)或关联规则(两种物品之间的关联关系). 概念:支持度:数据 ...

  4. 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是, ...

  5. 【转载】 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能

    原文地址: https://www.cnblogs.com/steven-yang/p/5686473.html ------------------------------------------- ...

  6. 机器学习实战笔记-k-近邻算法

    机器学习实战笔记-k-近邻算法 目录 1. k-近邻算法概述 2. 示例:使用k-近邻算法改进约会网站的配对效果 3. 示例:手写识别系统 4. 小结 本章介绍了<机器学习实战>这本书中的 ...

  7. 机器学习技法-AdaBoost元算法

    课程地址:https://class.coursera.org/ntumltwo-002/lecture 重要!重要!重要~ 一.Adaptive Boosting 的动机 通过组合多个弱分类器(hy ...

  8. 在Titanic数据集上应用AdaBoost元算法

    一.AdaBoost 元算法的基本原理 AdaBoost是adaptive boosting的缩写,就是自适应boosting.元算法是对于其他算法进行组合的一种方式. 而boosting是在从原始数 ...

  9. 《机器学习实战》基于朴素贝叶斯分类算法构建文本分类器的Python实现

    ============================================================================================ <机器学 ...

  10. 使用 AdaBoost 元算法提高分类器性能

    前言 有人认为 AdaBoost 是最好的监督学习的方式. 某种程度上因为它是元算法,也就是说它会是几种分类器的组合.这就好比对于一个问题能够咨询多个 "专家" 的意见了. 组合的 ...

随机推荐

  1. impala删表,而hdfs上文件却还在异常处理

    Impala/hive删除表,drop后,hdfs上文件却还在处理方法: 问题原因分析,如下如可以看出一个属组是hive,一个是impala,keberas账号登录hive用户无法删除impala用户 ...

  2. 洛谷P3502 [POI2010]CHO-Hamsters感想及题解(图论+字符串+矩阵加速$dp\&Floyd$)

    洛谷P3502 [POI2010]CHO-Hamsters感想及题解(图论+字符串+矩阵加速\(dp\&Floyd\)) 标签:题解 阅读体验:https://zybuluo.com/Junl ...

  3. ssh远程钥匙对连接

    1.服务器必须启动ssh服务 2.在客户机执行命令:ssh-keygen -t rsa 两次回车即可 3.在客户机家目录下的.ssh\下生成钥匙对 4.将公钥传输到要连接的服务器主机要连接的用户家目录 ...

  4. Java缓存Ehcache-Ehcache的Cache在SSM框架中的配置

    需要在Spring配置文件中配置: <!-- 配置缓存管理器工厂 --> <bean id="cacheManager" class="org.spri ...

  5. 【转载】JDK8 特性 stream(),lambda表达式,

    Stream()表达式 虽然大部分情况下stream是容器调用Collection.stream()方法得到的,但stream和collections有以下不同: 无存储.stream不是一种数据结构 ...

  6. 初学Java 数组统计字母

    public class CountLetterInArray { public static void main(String[] args) { char[] chars = createArra ...

  7. readlink 查看符号链接的文件的内容

    1. 命令功能 readlink 查看软链接文件里的真实内容. 2. 语法格式 readlink [option]  file 参数 参数说明 -f 后跟软链接文件 3. 使用范例 范例1 查看文件链 ...

  8. 终于读完了《Essential C++》

    先说这本书的优点吧 真的是一本非常好的书 不拘泥于非常具体的语法点 读这本书,可以体会到面向对象的魅力所在. 缺点就是这本书不太适合入门,当初也不知道是谁推荐我入门看这本书的. 想要大致能看懂这本书, ...

  9. css3 :enabled与:disabled伪类选择器

    css :enabled和:disabled伪类选择器 在Web表单中,有些表单元素(如输入框.密码框.复选框等)有“可用”和“不可用”这2种状态.默认情况下,这些表单元素都处在可用状态. 在CSS3 ...

  10. 使用Github 当作自己个人博客的图床

    使用Github 当作自己个人博客的图床 前提 本文前提: 我个人博客的草稿是存放在 github上的一个仓库 diarynote 截图存放的图片或者需要放在文章中图片,会固定存放在对应的文件夹中,我 ...