题目

某城市的街道呈网格状,左下角坐标为A(0, 0),右上角坐标为B(n, m),其中n >= m。现在从A(0, 0)点出发,只能沿着街道向正右方或者正上方行走,且不能经过图示中直线左上方的点,即任何途径的点(x, y)都要满足x >= y,请问在这些前提下,到达B(n, m)有多少种走法。

分析

首先,我们知道:如果现在从(0, 0)点出发,只能沿着街道向正右方或者正上方行走时,到(n,m)点(n>=m)的方案数是\(C^{m}_{n+m}\)。

发现,任何途径的点(x, y)都要满足x>=y就是不经过粉色线x=y+1



有一条违法的路径:



我们把路径按照粉色线做个对称,

我们发现,到橙色点的路径都一一对应每一条违法路径,也就是说,违法路径的方案数就是到橙色点的方案数。

所以,合法方案数=随便走的方案数-违法方案数=\(C^{m}_{n+m}-C^{m-1}_{n+m}\)

注意:如果直接算可能会超时,要把式子简化,而且高精度要压位。

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const int maxlongint=2147483647;
const int mo=10000;
using namespace std;
int f[20000],n,m,g[20000];
inline int times(int x)
{
memcpy(g,f,sizeof(g));
f[1]=0;
f[0]=g[0]+4;
for(int i=1;i<=f[0];i++)
{
f[i]+=g[i]*x;
f[i+1]=f[i]/mo;
f[i]-=f[i+1]*mo;
}
while(!f[f[0]] && f[0]>1)
f[0]--;
}
inline int div(int x)
{
memcpy(g,f,sizeof(g));
int k=0;
for(int i=g[0];i>=1;i--)
{
f[i]=(k*mo+g[i])/x;
k=(k*mo+g[i])-x*f[i];
}
f[0]=g[0];
while(!f[f[0]] && f[0]>1)
f[0]--;
}
int main()
{
scanf("%d%d",&n,&m);
f[0]=1;
f[1]=1;
int j=2;
for(int i=n+2;i<=n+m;i++)
{
if(j<=m)
{
if(i%j==0)
{
times(i/j);
j++;
}
else
times(i);
} }
times(n+1-m);
for(int i=j;i<=m;i++)
{
div(i);
}
for(int i=f[0];i>=1;i--)
{
if(f[0]!=i)
printf("%04d",f[i]);
else
printf("%d",f[i]);
}
}

【GDOI2014模拟】网格的更多相关文章

  1. 【GDOI2014模拟】JZOJ2020年8月14日T2 网格

    [GDOI2014模拟]JZOJ2020年8月14日T2 网格 题目 Time and Memory Limits Description 某城市的街道呈网格状,左下角坐标为A(0, 0),右上角坐标 ...

  2. 【GDOI2014模拟】JZOJ2020年8月14日提高组 服务器

    [GDOI2014模拟]JZOJ2020年8月14日提高组 服务器 题目 Time and Memory Limits Description 我们需要将一个文件复制到n个服务器上,这些服务器的编号为 ...

  3. jzoj 3431. 【GDOI2014模拟】网格

    Description 某城市的街道呈网格状,左下角坐标为A(0, 0),右上角坐标为B(n, m),其中n >= m.现在从A(0, 0)点出发,只能沿着街道向正右方或者正上方行走,且不能经过 ...

  4. GDOI2014模拟pty爬山(mountain)

    pty爬山(mountain) 在Pty学校附近,有一座名之为岳之麓的高山.Pty很喜欢和(哔--)一起爬山.山的平面模型如下:山由一个顶点集:A1,A2-An给定,保证Ai的x单调递增.我们将Ai和 ...

  5. GDOI2014模拟 旅行【SPFA】

    旅行(travel) 从前有一位旅者,他想要游遍天下所有的景点.这一天他来到了一个神奇的王国:在这片土地上,有n个城市,从1到n进行编号.王国中有m条道路,第i条道路连接着两个城市ai,bi,由于年代 ...

  6. 【GDOI2014模拟】服务器

    前言 直到比赛最后几分钟,才发现60%数据居然是一个水dp,结果没打完. 题目 我们需要将一个文件复制到n个服务器上,这些服务器的编号为S1, S2, -, Sn. 首先,我们可以选择一些服务器,直接 ...

  7. 【GDOI2014模拟】Tree

    题目 Wayne 在玩儿一个很有趣的游戏.在游戏中,Wayne 建造了N 个城市,现在他想在这些城市间修一些公路,当然并不是任意两个城市间都能修,为了道路系统的美观,一共只有M 对城市间能修公路,即有 ...

  8. 【GDOI2014模拟】雨天的尾巴

    题目 深绘里一直很讨厌雨天. 灼热的天气穿透了前半个夏天,后来一场大雨和随之而来的洪水,浇灭了一切. 虽然深绘里家乡的小村落对洪水有着顽固的抵抗力,但也倒了几座老房子,几棵老树被连 根拔起,以及田地里 ...

  9. [JZOJ3400] 【GDOI2014模拟】旅行

    题目 题目大意 给你一个图,让你选择权值和最小的边,使得\(1\)和\(n\),\(2\)和\(n-1\),--,\(K\)和\(n-K+1\)联通. \(K\leq 4\) 思考历程 一看到这题就觉 ...

随机推荐

  1. 转]@SuppressWarnings 详解

    转自:http://gladto.iteye.com/blog/728634 背景知识:        从JDK5开始提供名为Annotation(注释)的功能,它被定义为JSR-175规范.注释是以 ...

  2. Spring MVC静态资源处理——<mvc:resources /> ||<mvc:default-servlet-handler />

    优雅REST风格的资源URL不希望带 .html 或 .do 等后缀.由于早期的Spring MVC不能很好地处理静态资源,所以在web.xml中配置DispatcherServlet的请求映射,往往 ...

  3. (四) appium-desktop 脚本录制常用AW使用介绍

    通过使用appium-desktop录制脚本,编写app自动化脚本的过程中,会使用到一些AW,下面就这些AW的使用方法做详细的介绍.通过实践可以看到这几个AW可以完成测试工作. AWOpenGiveP ...

  4. WEB框架实战总结

    Django 在新一代的 Web框架 中非常出色 使用Python开发Web,最简单,原始和直接的办法是使用CGI标准,可以用WSGI接口 一.WSGI接口实现web页面 运行WSGI服务 我们先编写 ...

  5. lnmp一键安装包卸载mysql,重新安装报错mysql57-community-release conflicts with mysql-community-release-el6-5.noarch

    环境:CentOS Linux release 7.6.1810 lnmp1.5 独立下载mysql仓库 wget -i -c http://dev.mysql.com/get/mysql57-com ...

  6. CSU1081有向图BFS

    集训队分组 Description中南大学ACM的暑期集训马上就要开始了,这次集训会将全体N名集训队员(编号分别为1, 2, …, N)按集训选拔赛的排名分成两组,前K名队员分入A组,其余队员分入B组 ...

  7. Golang基本类型整理

    总是用的用的就模糊了,不知道基本的类型有哪些,看来要反反复复弄几次. Golang基本类型整理 基本类型以及定义变量需要注意的 对于基本类型的介绍,感觉这个博客讲的比较透彻,基本上都是从源码的角度来入 ...

  8. DataAdapter的Fill方法(转)

    使用DataAdapter填充DataSet(1) 在选择了DataAdapter的类型(SqlDataAdapter或OleDbDataAdapter)并配置了DataAdapter来执行所需的任务 ...

  9. java程序启动脚本

    #!/bin/bash appName=`ls|grep .jar$` if [ -z $appName ] then echo "Please check that this script ...

  10. [知乎]自己真是Know Nothing 历史上有哪些细思恐极的事件?

    作者:敖让链接:https://www.zhihu.com/question/38374479/answer/652432284来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明 ...