1 多GPU原理

单GPU时,思路很简单,前向、后向都在一个GPU上进行,模型参数更新时只涉及一个GPU。

多GPU时,有模型并行和数据并行两种情况。

模型并行指模型的不同部分在不同GPU上运行。

数据并行指不同GPU上训练数据不同,但模型是同一个(相当于是同一个模型的副本)。

TensorFlow支持的是数据并行。

数据并行的原理:CPU负责梯度平均和参数更新,在GPU上训练模型的副本。

多GPU并行计算的过程如下:

  1)模型副本定义在GPU上;
2)对于每一个GPU, 都是从CPU获得数据,前向传播进行计算,得到loss,并计算出梯度;
3)CPU接到GPU的梯度,取平均值,然后进行梯度更新。

这个在tf的实现思路如下:

模型参数保存在一个指定gpu/cpu上,模型参数的副本在不同gpu上,每次训练,提供batch_size*gpu_num数据,并等量拆分成多个batch,分别送入不同GPU。前向在不同gpu上进行,模型参数更新时,将多个GPU后向计算得到的梯度数据进行平均,并在指定GPU/CPU上利用梯度数据更新模型参数。

假设有两个GPU(gpu0,gpu1),模型参数实际存放在cpu0上,实际一次训练过程如下图所示:

2 model_deploy.py文件及其用法

为了能让一个Slim模型在多个GPU上训练更加容易,这个模块提供了一系列帮助函数,比如create_clones()、optimize_clones()、deploy()、gather_clone_loss()、_add_gradients_summaries()、_sum_clones_gradients()等,该模块位于:https://github.com/tensorflow/models/blob/master/research/slim/deployment/model_deploy.py

用法如下:

 g = tf.Graph()

  # 定义部署配置信息,你可以将此类的实例传递给deploy()以指定如何部署要构建的模型。 如果未传递,则将使用从默认deployment_hparams构建的实例。
config = model_deploy.DeploymentConfig(num_clones=2, clone_on_cpu=True) # 在保存变量的设备上创建global step
with tf.device(config.variables_device()):
global_step = slim.create_global_step() # 定义输入
with tf.device(config.inputs_device()):
images, labels = LoadData(...)
inputs_queue = slim.data.prefetch_queue((images, labels)) # 定义优化器
with tf.device(config.optimizer_device()):
optimizer = tf.train.MomentumOptimizer(FLAGS.learning_rate, FLAGS.momentum) # 定义模型和损失函数
def model_fn(inputs_queue):
images, labels = inputs_queue.dequeue()
predictions = CreateNetwork(images)
slim.losses.log_loss(predictions, labels) # 模型部署
model_dp = model_deploy.deploy(config, model_fn, [inputs_queue],optimizer=optimizer) # 开始训练
slim.learning.train(model_dp.train_op, my_log_dir,summary_op=model_dp.summary_op)

Clone namedtuple:把那些每次调用model_fn的关联值保存在一起

  • outputs: 调用model_fn()后的返回值
  • scope: 用来创建clone的scope
  • device: 用来创建clone的设备

DeployedModel namedtuple: 把那些需要被多个副本训练的值保存在一起

  • train_op: 一个运行优化器训练的操作,包含由model_fn创建的更新操作。仅仅在指定优化器时显示。
  • summary_op : 一个由model_fn()创建的操作,用来summeries和处理梯度。
  • total_loss: 总的损失,包含由model_fn()返回的损失和正则化损失的总和
  • clones: 通过create_clones()返回的克隆元组列表

DeploymentConfig的参数:

  • num_clones: 部署在每个副本上的模型克隆数量,该模型将在每个副本中复制num_clones次。
  • clone_on_cpu: 如果为true,则克隆被放在CPU上
  • replica_id: 模型部署所在副本的索引,对于主副本而言通常是0
  • num_replicas: 如果num_replicas为1,则通过单个进程部署模型。 在这种情况下,worker_device,num_ps_tasks和ps_device将被忽略。如果num_replicas大于1,则worker_device和ps_device必须为worker和ps作业指定TensorFlow设备,而num_ps_tasks必须为正。
  • num_ps_tasks : ps作业的任务数。 0不使用副本。
  • worker_job_name : 作业名
  • ps_job_name : 参数服务器作业名

Slim模型部署多GPU的更多相关文章

  1. TensorFlow Serving实现多模型部署以及不同版本模型的调用

    前提:要实现多模型部署,首先要了解并且熟练实现单模型部署,可以借助官网文档,使用Docker实现部署. 1. 首先准备两个你需要部署的模型,统一的放在multiModel/文件夹下(文件夹名字可以任意 ...

  2. PyTorch专栏(六): 混合前端的seq2seq模型部署

    欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/ 欢迎关注PyTorch官方中文教程站: http://pytorch.panchuang.net/ 专栏目录: 第一 ...

  3. 混合前端seq2seq模型部署

    混合前端seq2seq模型部署 本文介绍,如何将seq2seq模型转换为PyTorch可用的前端混合Torch脚本.要转换的模型来自于聊天机器人教程Chatbot tutorial. 1.混合前端 在 ...

  4. 学习笔记TF022:产品环境模型部署、Docker镜像、Bazel工作区、导出模型、服务器、客户端

    产品环境模型部署,创建简单Web APP,用户上传图像,运行Inception模型,实现图像自动分类. 搭建TensorFlow服务开发环境.安装Docker,https://docs.docker. ...

  5. 用tensorlayer导入Slim模型迁移学习

    上一篇博客[用tensorflow迁移学习猫狗分类]笔者讲到用tensorlayer的[VGG16模型]迁移学习图像分类,那麽问题来了,tensorlayer没提供的模型怎么办呢?别担心,tensor ...

  6. Tensorflow Serving 模型部署和服务

    http://blog.csdn.net/wangjian1204/article/details/68928656 本文转载自:https://zhuanlan.zhihu.com/p/233614 ...

  7. 【tensorflow-转载】tensorflow模型部署系列

    参考 1. tensorflow模型部署系列: 完

  8. 自动化kolla-ansible部署openstack+GPU透传方法

    自动化kolla-ansible部署openstack+GPU透传方法 欢迎加QQ群:1026880196 进行交流学习 1. CentOS7.x-8.x系列为虚拟机配置GPU直通 1. 编辑文件vi ...

  9. 如何使用flask将模型部署为服务

    在某些场景下,我们需要将机器学习或者深度学习模型部署为服务给其它地方调用,本文接下来就讲解使用python的flask部署服务的基本过程. 1. 加载保存好的模型 为了方便起见,这里我们就使用简单的分 ...

随机推荐

  1. Dart编程循环

    有时,某些指令需要重复执行.循环是一种理想的方法.循环表示必须重复的一组指令.在循环的上下文中,重复被称为迭代 . 下图说明了循环的分类 让我们开始讨论确定循环.迭代次数是确定/固定的循环称为确定循环 ...

  2. 如何打造7*24h持续交付通道?阿里高级技术专家的5点思考

    我们对于研发效能的讨论,本质上是提高整个技术生态中的协同效率.如果仅从研发角度出发,技术团队要实现的终极目标是7*24小时的灵活发布窗口,以及更快的业务迭代能力. 7*24小时发布窗口的实现其实并不简 ...

  3. QueryList 内容过滤

    <?php require 'vendor/autoload.php'; use QL\QueryList; $html =<<<STR <div id="de ...

  4. Java中的线程Thread方法之---suspend()和resume()

    前篇说到了Thread中的join方法,这一篇我们就来介绍一下suspend()和resume()方法,从字面意义上可以了解到这两个方法是一对的,suspend()方法就是将一个线程挂起(暂停),re ...

  5. 50 ubuntu下pcl编译以及用 VSCode配置pcl / opencv开发环境

    0 引言 最近在VSCode下搞开发,于是将pcl库迁移到这个环境下,用来跑一些依赖pcl的开源的代码以及自己做一些快速开发等. 1 pcl编译 主要参考了这篇博客,链接如下. https://blo ...

  6. lazyload懒加载和swiper轮播懒加载的用法

    对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度,比如商城网页. lazyload使用方法: 载入 JavaScript 文件: <script src="jquer ...

  7. redis笔记--------Jedis使用

    redis安装和启动就不说了 一.准备工作 1.redis -cli -p 6379 2.eclipse中新建项目,并导入jedis相关包 3.测试jedis连通性 二.Jedis常用API (哈希) ...

  8. tensorflow 训练的时候loss=nan

    出现loss为nan 可能是使用了relu激活函数,导致的.因为在负半轴上输出都是0

  9. linux下链接时缺少动态链接库

    1, 用ln将需要的so文件链接到/usr/lib或者/lib这两个默认的目录下边 ln -s /where/you/install/lib/*.so /usr/libsudo ldconfig 2, ...

  10. Winform 获取桌面设备上下文

    //获得桌面设备上下文 us(Graphics g = Graphics.FromHwnd(IntPtr.Zero)) { g.DrawLine(Pens.Red, , , , ); }