借这个题学新姿势,这个题需要利用差分才能AC,普通树状树有3个点过不了。

  差分原理(参考题解区大佬):

  一个例子,一组数据 $ a[] = { 1, 5, 4, 2, 3 } $,差分后得到 $ b[] = { 1, 4, -1, -2, 1 } $,其中 $ a_0 = 0, b_i = a_i - a_{i - 1} $,求原数组 $ a_n $ 某个位置 $ i $ 上的值。

  由 $ b_i = a_i - a_{i - 1} \Rightarrow a_i = b_i + a_{i - 1} $,于是

$$ \left. \begin{aligned} a_i &= b_i + a_{i - 1} \\ a_{i - 1} &= b_{i - 1} + a_{i - 2} \\ \vdots \\ a_1 &= b_1 + a_0 \end{aligned} \right \} + $$

  $ \Rightarrow  a_i = b_i + b_{i - 1} + \cdots + b_1 + a_0 $ ,注意到 $ a_0 = 0 $,于是 $ a_i = \sum_{i = 1}^{n} b_i $ 。这样就求出了原数组位置上的值了。

  然后再看看如何更新区间的值呢。

  我们对 a 数组区间 2 ~ 4 每个值进行 +2 操作,得到 $ 1, 7, 6, 4, 3 $,我们对这个数组进行新的差分得到 $ b_n' = { 1 6 -1 -2 -1 } $ ,我们比较新的差分数组 $ b_n' $ 与 $ b_n $,发现只有 $ b_2',b_5' $ 上的值变了,$ b_2' = b_2 + 2, b_5' = b_5 - 2 $,可以验证,在任何区间 $ a[l,...,r] $ 做出 $ +x $ 更新,都有 $ b_l' = b_l + x , b_{r + 1}' = b_{r + 1} - x $ 。并且不论任何数组经过这样操作都有这样的特点,于是就有了代码中的 `dif()` 函数对区间进行更新。这样每次更新只用更新位置 $ b_l, b_{r + 1} $ 上的值,效率提高了许多。

#include <bits/stdc++.h>
#define MP make_pair
#define PB push_back
#define st first
#define nd second
#define rd third
#define rg register
#define FOR(i, a, b) for(int i =(a); i <=(b); ++i)
#define RE(i, n) FOR(i, 1, n)
#define FORD(i, a, b) for(int i = (a); i >= (b); --i)
#define REP(i, n) for(int i = 0;i <(n); ++i)
#define VAR(v, i) __typeof(i) v=(i)
#define FORE(i, c) for(VAR(i, (c).begin()); i != (c).end(); ++i)
#define ALL(x) (x).begin(), (x).end()
#define SZ(x) ((int)(x).size())
using namespace std; #define lowbit(x) ((x) & (-x))
const int N = 500010;
int id[N];
void upd(int n, int k, int x)
{
while (k <= n) id[k] += x, k += lowbit(k);
}
void dif(int n, int l, int r, int x)
{
upd(n, l, x);
upd(n, r + 1, -x);
}
int sum(int k)
{
int ans = 0;
while (k > 0) ans += id[k], k -= lowbit(k);
return ans;
}
int org(int k)
{
return sum(k) - sum(k - 1);
}
int ask(int l, int r)
{
return sum(r) - sum(l - 1);
}
int main()
{
int n, m, k, x, opera, l, r, pre;
pre = 0;
cin >> n >> m;
FOR (i, 1, n)
{
cin >> x;
upd(n, i, x - pre); // 差分后更新到树状数组
pre = x;
}
while(m--)
{
cin >> opera;
switch(opera)
{
case 1: cin >> l >> r >> x; dif(n, l, r, x); break;
case 2: cin >> k; cout << sum(k) << endl; break;
}
}
return 0;
}

  

  

P3368 (模板)树状数组2的更多相关文章

  1. [模板] 树状数组 (C++ class)

    闲来无事(其实是打了两三道树状数组题),写了个树状数组模板…… /* Author: hotwords */ template<typename tp> class BinTree { p ...

  2. HDU 1166 线段树模板&树状数组模板

    HDU1166 上好的线段树模板&&树状数组模板 自己写的第一棵线段树&第一棵树状数组 莫名的兴奋 线段树: #include <cstdio> using nam ...

  3. 【洛谷 p3368】模板-树状数组 2(数据结构)

    题目:已知一个数列,你需要进行下面两种操作:1.将某区间每一个数数加上x:2.求出某一个数的和. 解法:树状数组+前缀和优化.数组中每位存和前一位的数的差,这样区间修改只用改两位,单点询问就是求前缀和 ...

  4. 【洛谷 p3374】模板-树状数组 1(数据结构)

    题目:已知一个数列,你需要进行下面两种操作:1.将某一个数加上x:2.求出某区间每一个数的和. 解法:树状数组求前缀和. #include<cstdio> #include<cstd ...

  5. POJ2299逆序对模板(树状数组)

    题目:http://poj.org/problem?id=2299 只能相邻两个交换,所以交换一次只会减少一个逆序对.所以交换次数就是逆序对数. ps:原来树状数组还可以记录后边lowbit位的部分和 ...

  6. 洛谷.3374.[模板]树状数组1(CDQ分治)

    题目链接 简易CDQ分治教程 //每个操作分解为一个有序数对(t,p),即(时间,操作位置),时间默认有序,用CDQ分治处理第二维 //对于位置相同的操作 修改优先于查询 //时间是默认有序的 所以可 ...

  7. 【poj 3167】Cow Patterns(字符串--KMP匹配+数据结构--树状数组)

    题意:给2个数字序列 a 和 b ,问按从小到达排序后,a中的哪些子串与b的名次匹配. a 的长度 N≤100,000,b的长度 M≤25,000,数字的大小 K≤25. 解法:[思考]1.X 暴力. ...

  8. 洛谷P3368 【模板】树状数组 2

    P3368 [模板]树状数组 2 102通过 206提交 题目提供者HansBug 标签 难度普及/提高- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 如题,已知一个数列,你需要进行下面两 ...

  9. P3368 【模板】树状数组 2(区间增减,单点查询)

    P3368 [模板]树状数组 2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数数加上x 2.求出某一个数的和 输入输出格式 输入格式: 第一行包含两个整数N.M,分别表 ...

  10. 模板【洛谷P3368】 【模板】树状数组 2

    P3368 [模板]树状数组 2 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数数加上x 2.求出某一个数的值 树状数组区间加,单点查询. code: #include <i ...

随机推荐

  1. 【NOIP2012普及组】质因数分解

    P1075 质因数分解 假期第一天就给一道入门难度的题写题解…… 这道题一开始就被我想复杂了:埃式筛,欧拉筛……然而开一个1e9的数组?不现实. 直到看到题解区的dalao用唯一分解定理: 算术基本定 ...

  2. 一键安装各个版本boost库(无需编译)

    1.NuGet 最简单的,用VS自带的NuGet包管理器安装,一般比较常用的上面都有 2.下载exe安装包 在这里https://sourceforge.net/projects/boost/file ...

  3. AcWing 896. 最长上升子序列 II

    #include<iostream> #include<algorithm> #include<vector> using namespace std; int m ...

  4. ES6新的数据类型 generato,在AJAX中的应用

    1.next()方法会执行generator的代码,然后,每次遇到yield x;就返回一个对象{value: x, done: true/false},然后“暂停”.返回的value就是yield的 ...

  5. webpack4.41.0配置四(热替换)

    每次修改都要去编译,这个操作比较繁琐.所以我们希望编译过程是自动化的,而且页面的更新也是自动化的.所以需要使用这个热替换 1.首先安装webpack-dev-server:npm install  w ...

  6. Rumor

    Vova promised himself that he would never play computer games... But recently Firestorm — a well-kno ...

  7. AAC huffman decoding

    在AAC编码器内部,使用huffman coding用于进一步减少scalefactor和量化频谱系数的冗余. 从individual_channel_stream层提取码流进行huffman解码,码 ...

  8. web开发一些资源的在线引用地址

    <!-- Bootstrap --> <link rel="stylesheet" href="https://cdn.bootcss.com/boot ...

  9. pycharm的一些快捷键[转]

    编辑类: Ctrl + Space 基本的代码完成(类.方法.属性)Ctrl + Alt + Space 类名完成Ctrl + Shift + Enter 语句完成Ctrl + P 参数信息(在方法中 ...

  10. Bugku-CTF加密篇之affine(y = 17x-8 flag{szzyfimhyzd})

    affine y = 17x-8 flag{szzyfimhyzd} 答案格式:flag{*} 来源:第七届山东省大学生网络安全技能大赛