Codeforces Round #198 (Div. 1 + Div. 2)
A. The Wall
- 求下gcd即可。
B. Maximal Area Quadrilateral
- 枚举对角线,根据叉积判断顺、逆时针方向构成的最大面积。
- 由于点坐标绝对值不超过1000,用int比较快。
C. Tourist Problem
- 假设序列为\(p_1,p_2,...,p_n\),则距离总和为\(,,,p_1,|p_2-p_1|,...,|p_n-p_{n-1}|\)。
- 第1个点\(p_1\)的贡献为\(\sum a_i(n-1)!\)
- \(|p_i-p_{i-1}|\)的贡献为\(|p_i-p_{i-1}|(n-1)(n-2)!\)
- 对于\(a_i\)排序,可以计算所有\(p_i-p_{i-1},p_i>p_{i-1}\)的总和,乘以2即所有\(|p_i-p_{i-1}|\)的总和。
D. Bubble Sort Graph
- 对于所有\(i<j, a_i>a_j\)的点对来说,冒泡排序最终都会交换这两个数,即存在连边。
- 最大独立集显然就是最长上升序列的长度。
E. Iahub and Permutations
- \(dp,O(n^2)\)做法:
- \(dp(n,k)\)表示有\(n\)个自由放置的数,\(k\)个限制放置的数。
- \(dp(n,0)=n!\),因为没有限制,所以方案数为\(n!\)
- \(dp(n,1)=n \cdot dp(n,0)\),限制的数有\(n\)个位置可以放置,剩余\(n\)个数全排列放置。
- \(dp(n,k)=n\cdot dp(n,k-1)+(k-1)\cdot dp(n+1,k-2)\),考虑其中一个限制的位置:选择自由元放置,则对应限制的数称为自由元。选择限制数放置,不能放置对应的数,所有\(k-1\)个,对应限制的数称为自由元。
- 容斥\(O(n^2)\)做法:
- \(dp(i)\)表示有\(i\)个\(fixed\ point\)的方案数,\(tot\)表示空闲位置,\(fp\)表示最大数量。
- \(dp(i)=\binom{fp}{i}(tot-i)!-\sum_{j=i+1}^{fp}{dp(j)\binom{j}{i}}\)
- \(dp,O(n)\)做法:
- \(dp(i)\)表示放置\(i\)个限制数的方案数。
- \(dp(0)=free!\),\(free\)表示自由元的数量。
- \(dp(1)=dp(0)*free\),当前自由元不能放置在本身位置,所以需要和一个自由元对换位置。
- \(dp(i)=free\cdot dp(i-1)+(i-1)\cdot(dp(i-2)+dp(i-1))\),\((i-1)dp(i-2)\)表示当前限制数和之前其中一个限制数两个互相占据彼此的位置,则变成放置\(i-2\)的子问题,否则如果没有对换位置,则变成\(i-1\)的子问题。
F. Iahub and Xors
- 二维前缀异或和。
- 修改单点\((x,y)\),会对\(,(x+2k,y+2k)\)所有前缀产生影响。
- 根据\((x,y)\)的奇偶性,建4棵二维树状数组,容斥计算异或和以及更新前缀和。
G. Candies Game
- 结论:任意三个数\(A,B,C\),都能通过若干次操作,使得其中一个数变成0。
- 证明,以下考虑三个数都不相等的情况:
- 假设\(0<A<B<C\),则\(B=A\cdot q + r\),其中\(r<A\)。那么我们的目的就是把\(B\)转成\(r\),得到更小的三元组。
- \(q\)用二进制表示,则\(B=(2^{e_n}+2^{e_{n-1}}+…+2^{e_0})A+r\)。
- 从最低位考虑,若对应位置为\(1\),则\(q\)的二进制1的个数减少1,否则从\(C\)取出\(A\)放入\(A\)中。即\(A\)的值依次变成\(2^0A,2^1A,2^2A,…\),那么就能对应地把\(q\)的1全部去除,即$B'=r
Codeforces Round #198 (Div. 1 + Div. 2)的更多相关文章
- Codeforces Round #198 (Div. 2)A,B题解
Codeforces Round #198 (Div. 2) 昨天看到奋斗群的群赛,好奇的去做了一下, 大概花了3个小时Ak,我大概可以退役了吧 那下面来稍微总结一下 A. The Wall Iahu ...
- Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship
Problem Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship Time Limit: 2000 mSec P ...
- Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)
Problem Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...
- Educational Codeforces Round 43 (Rated for Div. 2)
Educational Codeforces Round 43 (Rated for Div. 2) https://codeforces.com/contest/976 A #include< ...
- Educational Codeforces Round 35 (Rated for Div. 2)
Educational Codeforces Round 35 (Rated for Div. 2) https://codeforces.com/contest/911 A 模拟 #include& ...
- Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings
Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...
- Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes
Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes 题目连接: http://code ...
- Educational Codeforces Round 63 (Rated for Div. 2) 题解
Educational Codeforces Round 63 (Rated for Div. 2)题解 题目链接 A. Reverse a Substring 给出一个字符串,现在可以对这个字符串进 ...
- Educational Codeforces Round 39 (Rated for Div. 2) G
Educational Codeforces Round 39 (Rated for Div. 2) G 题意: 给一个序列\(a_i(1 <= a_i <= 10^{9}),2 < ...
- Educational Codeforces Round 48 (Rated for Div. 2) CD题解
Educational Codeforces Round 48 (Rated for Div. 2) C. Vasya And The Mushrooms 题目链接:https://codeforce ...
随机推荐
- [Vue CLI 3] 配置解析之 css.extract
大家还记得我们在老版本中,对于线上环境配置中会把所有的 css 多打成一个文件: 核心是使用了插件 extract-text-webpack-plugin,方式如下: 第一步都是加载插件 const ...
- mysql更改密码
mysql command line client输入密码以后闪退问题的解决: 网上搜到的解决办法(my.ini文件之类的修改对我都没有起到作用).. 所以觉得是自己密码的问题,因为许久不用这个软件了 ...
- 廖雪峰Python总结2
1.切片 L[0:3]表示,从索引0开始,直到索引3为止,但是不包括索引3.如果第一个索引是0,还可以省略L[:3] 倒数切片:L[-n:-1],-1是倒数第一个元素,L[-n:-1]不包括倒数第一个 ...
- 【JZOJ4744】【NOIP2016提高A组模拟9.2】同余
题目描述 输入 输出 样例输入 5 2 1 5 2 3 7 1 3 2 1 2 5 3 0 样例输出 2 1 数据范围 解法 题目允许离线,且没有修改操作. 考虑把一个询问拆分成两个形如"a ...
- python 定义子类
- 观察者模式(Java实现)
import java.util.ArrayList; import java.util.Iterator; /* 抽象观察者类 */ abstract class Observer { public ...
- C#文件读写(txt 简单方式)
1.文件写入 // 路径,写入内容 System.IO.File.WriteAllText(@".\File.txt", string.Empty); 可更换相应的方法 2.文件读 ...
- 让超出div内容的显示滚动条:overflow:auto,以及overflow其它属性
css的属性,以前没用过遇到了,记录一下: 虽然layui本来自带这个处理,但是为了灵活,抛弃layui原有的加载,只是用layui的样样式,就要使用到这个css属性 总结overflow属性: /* ...
- 阿里开源新一代 AI 算法模型,由达摩院90后科学家研发
最炫的技术新知.最热门的大咖公开课.最有趣的开发者活动.最实用的工具干货,就在<开发者必读>! 每日集成开发者社区精品内容,你身边的技术资讯管家. 每日头条 阿里开源新一代 AI 算法模型 ...
- shell学习(18)- split切分文件命令
Linux split命令用于将一个文件分割成数个. 该指令将大文件分割成较小的文件,在默认情况下将按照每1000行切割成一个小文件. 语法: split [--help][--version][-& ...