喜欢手写学习,记忆深刻(字丑勿喷!)。

计算过程的代码如下:

public class PageRank
{
private static double m[][]={
{ 0 , 0.5 , 1 , 0 },
{0.333333333 , 0 , 0 , 0.5},
{0.333333333 , 0 , 0 , 0.5},
{0.333333333 , 0.5 , 0 , 0 }
};
private static double v[]={0.25,0.25,0.25,0.25};
private static double v1[]={0,0,0,0};
public static void main(String[] argv)
{
for(int iterater=0;iterater<1000;iterater++)
{
for(int i=0;i<4;i++)
{
for(int j=0;j<4;j++)
{
v1[i]+=m[i][j]*v[j];
}
}
for(int k=0;k<4;k++)
{
v[k]=v1[k];
v1[k]=0;
}
}
for(int k=0;k<4;k++)
{
System.out.println(v[k]);
}
}
}

  上面使用的图是一个没有太大缺陷的图,其实PageRank中海油很多问题需要处理,主要问题有:

1.终止点问题

上述上网者的行为是一个马尔科夫过程的实例,要满足收敛性,需要具备一个条件:

  • 图是强连通的,即从任意网页可以到达其他任意网页:

  互联网上的网页不满足强连通的特性,因为有一些网页不指向任何网页,如果按照上面的计算,上网者到达这样的网页后便走投无路、四顾茫然,导致前面累计得到的转移概率被清零,这样下去,最终的得到的概率分布向量所有元素几乎都为0。假设我们把上面图中C到A的链接丢掉,C变成了一个终止点,得到下面这个图:

         

  对应的转移矩阵为:

  

  连续迭代下去,最终所有元素都为0:  

  

代码如下:

public class PageRank
{
private static double m[][]={
{ 0 , 0.5 , 0 , 0 },
{0.333333333 , 0 , 0 , 0.5},
{0.333333333 , 0 , 0 , 0.5},
{0.333333333 , 0.5 , 0 , 0 }//第三列全为0
};
private static double v[]={0.25,0.25,0.25,0.25};
private static double v1[]={0,0,0,0};
public static void main(String[] argv)
{
for(int iterater=0;iterater<1000;iterater++)
{
for(int i=0;i<4;i++)
{
for(int j=0;j<4;j++)
{
v1[i]+=m[i][j]*v[j];
}
}
for(int k=0;k<4;k++)
{
v[k]=v1[k];
v1[k]=0;
}
}
for(int k=0;k<4;k++)
{
System.out.println(v[k]);
}
}
}

2.陷阱问题

  另外一个问题就是陷阱问题,即有些网页不存在指向其他网页的链接,但存在指向自己的链接。比如下面这个图:

        

  上网者跑到C网页后,就像跳进了陷阱,陷入了漩涡,再也不能从C中出来,将最终导致概率分布值全部转移到C上来,这使得其他网页的概率分布值为0,从而整个网页排名就失去了意义。如果按照上面图对应的转移矩阵为: 

        

  不断的迭代下去,就变成了这样:

    

代码如下:

public class PageRank
{
private static double m[][]={
{ 0 , 0.5 , 0 , 0 },
{0.333333333 , 0 , 0 , 0.5},
{0.333333333 , 0 , 1 , 0.5},//此行第三列为1
{0.333333333 , 0.5 , 0 , 0 }
};
private static double v[]={0.25,0.25,0.25,0.25};
private static double v1[]={0,0,0,0};
public static void main(String[] argv)
{
for(int iterater=0;iterater<1000;iterater++)
{
for(int i=0;i<4;i++)
{
for(int j=0;j<4;j++)
{
v1[i]+=m[i][j]*v[j];
}
}
for(int k=0;k<4;k++)
{
v[k]=v1[k];
v1[k]=0;
}
}
for(int k=0;k<4;k++)
{
System.out.println(v[k]);
}
}
}

解决终止点问题和陷阱问题

上面过程,我们忽略了一个问题,那就是上网者是一个悠闲的上网者,而不是一个愚蠢的上网者,我们的上网者是聪明而悠闲,他悠闲,漫无目的,总是随机的选择网页,他聪明,在走到一个终结网页或者一个陷阱网页(比如两个示例中的C),不会傻傻的干着急,他会在浏览器的地址随机输入一个地址,当然这个地址可能又是原来的网页,但这里给了他一个逃离的机会,让他离开这万丈深渊。模拟聪明而又悠闲的上网者,对算法进行改进,每一步,上网者可能都不想看当前网页了,不看当前网页也就不会点击上面的连接,而上悄悄地在地址栏输入另外一个地址,而在地址栏输入而跳转到各个网页的概率是1/n。假设上网者每一步查看当前网页的概率为a,那么他从浏览器地址栏跳转的概率为(1-a),于是原来的迭代公式转化为:

  现在我们来计算带陷阱的网页图的概率分布:

  重复迭代下去,得到:

  可以看到C虽然占了很大一部分pagerank值,但其他网页页获得的一些值,因此C的链接结构,它的权重确实应该会大些。

代码如下:

public class PageRank
{
private static double m[][]={
{ 0 , 0.5 , 0 , 0 },
{0.333333333 , 0 , 0 , 0.5},
{0.333333333 , 0 , 1 , 0.5},
{0.333333333 , 0.5 , 0 , 0 }
};
private static double v[]={0.25,0.25,0.25,0.25};
private static double v1[]={0,0,0,0};
public static void main(String[] argv)
{
for(int iterater=0;iterater<1000;iterater++)
{
for(int i=0;i<4;i++)
{
for(int j=0;j<4;j++)
{
v1[i]+=m[i][j]*v[j];
}
}
for(int k=0;k<4;k++)
{
v[k]=0.8*v1[k]+0.2*0.25;//此处0.2乘的一直都是v[]的初始值
v1[k]=0;
}
}
for(int k=0;k<4;k++)
{
System.out.println(v[k]);
}
}
}

  

PageRank学习的更多相关文章

  1. 吴裕雄--天生自然HADOOP学习笔记:hadoop集群实现PageRank算法实验报告

    实验课程名称:大数据处理技术 实验项目名称:hadoop集群实现PageRank算法 实验类型:综合性 实验日期:2018年 6 月4日-6月14日 学生姓名 吴裕雄 学号 15210120331 班 ...

  2. 【Hadoop学习之十一】MapReduce案例分析三-PageRank

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 什么是pagerank?算法原理- ...

  3. 大数据技术之_19_Spark学习_05_Spark GraphX 应用解析 + Spark GraphX 概述、解析 + 计算模式 + Pregel API + 图算法参考代码 + PageRank 实例

    第1章 Spark GraphX 概述1.1 什么是 Spark GraphX1.2 弹性分布式属性图1.3 运行图计算程序第2章 Spark GraphX 解析2.1 存储模式2.1.1 图存储模式 ...

  4. 97、PageRank算法学习

    最近由于.......你懂得,需要一些搜索方面的知识,于是乎我重新复习了一下上半年读的那本书<数学之美>Dr吴军老师写的. 感觉读完这种书还是写一下比较好,因为将来说不定就会忘记了. 接下 ...

  5. 【原创】机器学习之PageRank算法应用与C#实现(2)球队排名应用与C#代码

    在上一篇文章:机器学习之PageRank算法应用与C#实现(1)算法介绍 中,对PageRank算法的原理和过程进行了详细的介绍,并通过一个很简单的例子对过程进行了讲解.从上一篇文章可以很快的了解Pa ...

  6. spark学习笔记总结-spark入门资料精化

    Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用. ...

  7. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  8. Hadoop家族学习路线图--转载

    原文地址:http://blog.fens.me/hadoop-family-roadmap/ Sep 6, 2013 Tags: Hadoophadoop familyroadmap Comment ...

  9. Hadoop应用开发实战(flume应用开发、搜索引擎算法、Pipes、集群、PageRank算法)

    Hadoop是2013年最热门的技术之一,通过北风网robby老师<深入浅出Hadoop实战开发>.<Hadoop应用开发实战>两套课程的学习,普通Java开发人员可以在最快的 ...

随机推荐

  1. Django CRM查询 XXX.object.filter() 常用用法总结

    __gt 大于 __gte 大于等于 User.objects.filter(age__gt=10) // 查询年龄大于10岁的用户 User.objects.filter(age__gte=10) ...

  2. POJ 3171.Cleaning Shifts-区间覆盖最小花费-dp+线段树优化(单点更新、区间查询最值)

    Cleaning Shifts Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4721   Accepted: 1593 D ...

  3. IEDA快捷键

    前言 开发工具从eclipse过渡到idea了:在刚开始使用的时候被idea强大的快捷键都惊呆了,这里记录了常见的一些快捷键和小伙伴们分享. 快捷键 鼠标悬停在单词上自动提示 : settings-- ...

  4. sum nowcode

    时间限制:1秒 空间限制:131072K 题目描述 考虑维护一个这样的问题:(1) 给出一个数组A,标号为1~n(2) 修改数组中的一个位置.(3) 询问区间[l,r]中所有子集的位运算and之和mo ...

  5. 【DFS】XIII Open Championship of Y.Kupala Grodno SU Grodno, Saturday, April 29, 2017 Problem D. Divisibility Game

    题意:给你一个序列,长度不超过52,每个元素不超过13.让你重新对这个序列排序,sum(i)表示i的前缀和,使得排序过后,对每个i,都有sum(i)%i==0. 深搜,加两个优化:①倒着从后向前搜:② ...

  6. POJ 2139 Six Degrees of Cowvin Bacon (弗洛伊德最短路)

    题意:奶牛拍电影,如果2个奶牛在同一场电影里演出,她们的合作度是1,如果ab合作,bc合作,ac的合作度为2,问哪一头牛到其他牛的合作度平均值最小再乘100 思路:floyd模板题 #include& ...

  7. python的dict和set

    dict dict是dictionary的缩写,python内置了字典,在其他语言中也称为map,使用键值对储存,具有极快的查找速度. 如果是只用list来实现,就需要两个list,先在第一个list ...

  8. [转]spring tx:advice 和 aop:config 配置事务

      <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www. ...

  9. mysql select 1

    看数据库连接池源码,发现连接池的参数validationQuery(SQL查询,用来验证从连接池取出的连接)设置的值为"SELECT 1",之前很少用这种写法,于是 google一 ...

  10. golang slice 切片原理

    golang 中的 slice 非常强大,让数组操作非常方便高效.在开发中不定长度表示的数组全部都是 slice .但是很多同学对 slice 的模糊认识,造成认为golang中的数组是引用类型,结果 ...