BZOJ2820:YY的GCD——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=2820
Description
Input
Output
Sample Input
10 10
100 100
Sample Output
2791
————————————————————————
看hzw的博客吧,他讲的蛮清楚的……
我主要是没有可以写数学公式的东西……
#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
int miu[N],su[N],sum[N];
ll f[N];
bool he[N];
void Euler(int n){
int tot=;
miu[]=;
for(int i=;i<=n;i++){
if(!he[i]){
su[++tot]=i;
miu[i]=-;
}
for(int j=;j<=tot;j++){
if(i*su[j]>=n)break;
he[i*su[j]]=;
if(i%su[j]==){
miu[i*su[j]]=;break;
}
else miu[i*su[j]]=-miu[i];
}
}
for(int i=;i<=tot;i++){
int p=su[i];
for(int j=;j*p<=n;j++)f[j*p]+=miu[j];
}
for(int i=;i<=n;i++)f[i]+=f[i-];
return;
}
int main(){
Euler();
int t;
scanf("%d",&t);
while(t--){
int a,b;ll ans=;
scanf("%d%d",&a,&b);
if(a>b)swap(a,b);
for(int i=,j;i<=a;i=j+){
j=min(a/(a/i),b/(b/i));
ans+=(f[j]-f[i-])*(a/i)*(b/i);
}
printf("%lld\n",ans);
}
return ;
}
BZOJ2820:YY的GCD——题解的更多相关文章
- [BZOJ2820]YY的GCD
[BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...
- BZOJ2820 YY的GCD 【莫比乌斯反演】
BZOJ2820 YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, ...
- BZOJ2820 YY的GCD 莫比乌斯+系数前缀和
/** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...
- BZOJ2820:YY的GCD(莫比乌斯反演)
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- 洛谷 P2257 YY的GCD 题解
原题链接 庆祝: 数论紫题 \(T4\) 达成! 莫比乌斯 \(T1\) 达成! yy 真是个 神犇 前记 之前我觉得: 推式子,直接欧拉筛,筛出个 \(\phi\),然后乱推 \(\gcd\) 就行 ...
- Bzoj-2820 YY的GCD Mobius反演,分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题意:多次询问,求1<=x<=N, 1<=y<=M且gcd( ...
- 【莫比乌斯反演】BZOJ2820 YY的GCD
Description 求有多少对(x,y)的gcd为素数,x<=n,y<=m.n,m<=1e7,T<=1e4. Solution 因为题目要求gcd为素数的,那么我们就只考虑 ...
- BZOJ2820: YY的GCD(反演)
题解 题意 题目链接 Sol 反演套路题.. 不多说了,就是先枚举一个质数,再枚举一个约数然后反演一下. 最后可以化成这样子 \[\sum_{i = 1}^n \frac{n}{k} \frac{n} ...
- [洛谷2257]YY的GCD 题解
整理题目转化为数学语言 题目要我们求: \[\sum_{i=1}^n\sum_{i=1}^m[gcd(i,j)=p]\] 其中 \[p\in\text{质数集合}\] 这样表示显然不是很好,所以我们需 ...
随机推荐
- webpack loader 生成虚拟文件的方案
此文已由作者张磊授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 前言 使用 webpack 的时候,难免需要写一些 loader,接着就会遇到一个很纠结的问题.该 loade ...
- unity3d 计时功能舒爽解决方案
上次也写了一篇计时功能的博客 今天这篇文章和上次的文章实现思路不一样,结果一样 上篇文章地址:http://www.cnblogs.com/shenggege/p/4251123.html 思路决定一 ...
- Qt 独立运行时伴随CMD命令窗口
用Qt写了一个小软件,在把程序release后,打包分装后,发现程序运行的时候会伴随cmd命令窗口,可把我愁怀了 不过功夫不负有心人,在老师和我网友的帮助下,终于搞完了 CONFIG:指定工程配置和编 ...
- mysql5.6 无法远程连接问题解决
需要配置mysql5.6版本的my.cnf文件,我的my.cnf文件配置如下: port=3306是我后来自己加上的.加上这个之后重启mysql service mysqld restart 记得给r ...
- Linux命令应用大词典-第40章 网络客户端
40.1 elinks:字符模式的Web浏览器 40.2 wget:从Web网站下载文件 40.3 curl:传输URL 40.4 lynx:通用分布式信息的万维网浏览器 40.5 lftp:实现文件 ...
- 博客更换至 www.zhaoch.top
博客更换至 www.zhaoch.top 随手拷了一些链接 http://www.zhaoch.top/操作系统/linux/常用命令备忘.html http://www.zhaoch.top/操作系 ...
- C 计算员工工资
#include <stdio.h> int main(int argc, char **argv) { //定义四个变量 g每小时固定的工资 40 固定工作时间 pay工资 hours员 ...
- win 下通过dos命令格式化磁盘
该命令可以解决好多问题,比如: 1.u盘作为启动后,如何恢复成正常的u盘 1.win + r ->cmd 进入dos模式 2.输入diskpart后回车,点击确定,进入diskpart命令的交互 ...
- leetcode-全排列详解(回溯算法)
全排列 给定一个没有重复数字的序列,返回其所有可能的全排列. 示例: 输入: [1,2,3] 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2 ...
- mouseover 和 mouseout 事件是可以冒泡的 取消
mouseover 和 mouseout 事件是可以冒泡的,子元素上触发的事件会冒泡到父元素上.可以改用 mouseleave 和 mouseenter 事件,这两个事件不冒泡.