poj 2391 Ombrophobic Bovines,

最大流, 拆点, 二分

dinic

/*
* Author: yew1eb
* Created Time: 2014年10月31日 星期五 15时39分22秒
* File Name: poj2391.cpp
*/
#include <ctime>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <string>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
const int inf = 1e9;
const ll INF = 1e18;
const double eps = 1e-8;
const double pi = acos(-1.0);
const int maxn = 600;
const int maxm = 100000;
struct Edge{
int to, next;
int cap;
Edge(){}
Edge(int nt, int t, int cp):next(nt),to(t),cap(cp){}
}edge[maxm]; int head[maxn], tot;
int n, m, S, T; void init(){
tot = 0;
memset(head, -1, sizeof head );
} void add(int u, int v, int c){
edge[tot] = Edge(head[u], v, c); head[u] = tot++;
edge[tot] = Edge(head[v], u, 0); head[v] = tot++;
} int d[maxn];
bool vis[maxn]; bool bfs(){
queue<int> q;
q.push(S);
memset(vis, 0, sizeof vis );
vis[S] = 1; d[S] = 0;
while(!q.empty()){
int u = q.front(); q.pop();
for(int i=head[u]; ~i; i=edge[i].next){
int &v = edge[i].to;
if(!vis[v] && edge[i].cap>0){
vis[v] = 1;
d[v] = d[u] + 1;
q.push(v);
}
}
}
return vis[T];
} int dfs(int u, int a){
if(u==T||a==0) return a;
int flow = 0, f;
for(int i=head[u];~i; i=edge[i].next){
int &v = edge[i].to;
if(d[u]+1==d[v]&&(f=dfs(v,min(a,edge[i].cap)))>0){
edge[i].cap -= f;
edge[i^1].cap += f;
flow += f;
a -= f;
if(a==0) break;
}
}
return flow;
} int dinic(){
int flow = 0;
while(bfs()){
flow += dfs(S, inf);
}
return flow;
} ll g[maxn][maxn];
void floyd(){
for(int k=1; k<=n; ++k)
for(int i=1; i<=n; ++i)
for(int j=1; j<=n; ++j){
g[i][j] = min(g[i][j], g[i][k] + g[k][j]);
}
} int a[maxn], b[maxn];
void create_graph(ll x){
init();
for(int i=1; i<=n; ++i)
for(int j=1; j<=n; ++j)
if(g[i][j]<=x) add(i,j+n, inf);
for(int i=1; i<=n; ++i){
add(S, i, a[i]);
add(i+n, T, b[i]);
}
} int main(){
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
// freopen("out.cpp", "w", stdout);
#endif // ONLINE_JUDGE
scanf("%d%d", &n, &m);
int u, v, c;
S = 0, T = 2*n+2;
int sum = 0;
for(int i=1; i<=n; ++i){
scanf("%d%d", &a[i], &b[i]);
sum += a[i];
} for(int i=1; i<=n; ++i) {
g[i][i] = 0;
for(int j=i+1; j<=n; ++j)
g[i][j] = g[j][i] = INF;
}
for(int i=1; i<=m; ++i){
scanf("%d%d%d", &u, &v, &c);
if(g[u][v]>c) g[u][v] = g[v][u] = c;
}
floyd(); //bsearch
ll l = 0, r = 0, mid, ans = -1;
for(int i=1; i<=n; ++i) for(int j=1; j<=n; ++j)
if(g[i][j]<INF) r = max(r, g[i][j]);
while(l<=r){
mid = (l+r)>>1;
create_graph(mid);
int flow = dinic();
if(flow == sum){
ans = mid;
r = mid - 1;
}else
l = mid + 1;
}
cout<<ans<<endl;
return 0;
}

isap

int get_flow(int u, int flow)
{
if(u==T || flow==0)return flow;
int res=0, f;
for(int i=head[u]; ~i; i=edge[i].next) {
int &v = edge[i].to;
if(d[u]>d[v] && (f=get_flow(v,min(flow,edge[i].cap)))>0) {
edge[i].cap -= f;
edge[i^1].cap += f;
res += f;
flow -= f;
if(flow==0) return res;
}
}
if(!(--gap[d[u]]))d[S]=cnt+2;
gap[++d[u]]++;
return res;
} int isap()
{
int flow = 0;
memset(gap, 0, sizeof gap );
memset(d, 0, sizeof d );
cnt = T-S+1;//顶点数
gap[0] = cnt;
while(d[S]<cnt) flow += get_flow(S, inf);
return flow;
}

poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap的更多相关文章

  1. poj 2391 Ombrophobic Bovines(最大流+floyd+二分)

    Ombrophobic Bovines Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 14519Accepted: 3170 De ...

  2. POJ 2391 Ombrophobic Bovines(Floyd+二分+最大流)

    题目链接 题意:农场有F(1 <= F <= 200)片草地用于放牛,这些草地有P(1 <= P <= 1500)连接,农场的草地上有一些避雨点,奶牛们可以在避雨点避雨,但是避 ...

  3. POJ 2391 Ombrophobic Bovines

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18623   Accepted: 4 ...

  4. POJ 2391 Ombrophobic Bovines (Floyd + Dinic +二分)

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11651   Accepted: 2 ...

  5. POJ 2391 Ombrophobic Bovines(二分+拆点+最大流)

    http://poj.org/problem?id=2391 题意: 给定一个无向图,点i处有Ai头牛,点i处的牛棚能容纳Bi头牛,求一个最短时间T,使得在T时间内所有的牛都能进到某一牛棚里去. 思路 ...

  6. POJ 2391 Ombrophobic Bovines ★(Floyd+二分+拆点+最大流)

    [题意]有n块草地,一些奶牛在草地上吃草,草地间有m条路,一些草地上有避雨点,每个避雨点能容纳的奶牛是有限的,给出通过每条路的时间,问最少需要多少时间能让所有奶牛进入一个避雨点. 和POJ2112很类 ...

  7. poj 2391 Ombrophobic Bovines 最短路 二分 最大流 拆点

    题目链接 题意 有\(n\)个牛棚,每个牛棚初始有\(a_i\)头牛,最后能容纳\(b_i\)头牛.有\(m\)条道路,边权为走这段路所需花费的时间.问最少需要多少时间能让所有的牛都有牛棚可待? 思路 ...

  8. POJ 2391 Ombrophobic Bovines ( 经典最大流 && Floyd && 二分 && 拆点建图)

    题意 : 给出一些牛棚,每个牛棚都原本都有一些牛但是每个牛棚可以容纳的牛都是有限的,现在给出一些路与路的花费和牛棚拥有的牛和可以容纳牛的数量,要求最短能在多少时间内使得每头牛都有安身的牛棚.( 这里注 ...

  9. POJ 2391.Ombrophobic Bovines (最大流)

    实际上是求最短的避雨时间. 首先将每个点拆成两个,一个连接源点,一个连接汇点,连接源点的点的容量为当前单的奶牛数,连接汇点的点为能容纳的奶牛数. floyd求任意两点互相到达的最短时间,二分最长时间, ...

随机推荐

  1. List the Books

    描述 Jim is fond of reading books, and he has so many books that sometimes it's hard for him to manage ...

  2. Redis 真得那么好用吗?

    不管你是从事Python.Java.Go.PHP.Ruby等等......Redis都应该是一个比较熟悉的中间件.而大部分经常写业务代码的程序员,实际工作中或许只用到了set value.GetVal ...

  3. usaco-2.2.2Subset Sums 集合

    01背包,对每个数至多取一次,为了避免重复,应倒序dp usaco-2.2.2Subset Sums 集合 时间限制: 1 Sec  内存限制: 128 MB 题目描述 对于从1到N的连续整集合合,能 ...

  4. MYSQL复习笔记5-select-from-where子句

    Date: 20140125Auth: Jin参考:http://dev.mysql.com/doc/refman/5.1/zh/sql-syntax.html#select一.select子句主要定 ...

  5. CentOS 6.9下KVM虚拟机网络Bridge(网桥)方式与NAT方式详解(转)

    摘要:KVM虚拟机网络配置的两种方式:NAT方式和Bridge方式.Bridge方式的配置原理和步骤.Bridge方式适用于服务器主机的虚拟化.NAT方式适用于桌面主机的虚拟化. NAT的网络结构图: ...

  6. 安装Xampp-配置appche,mysql运行环境遇到的坑

    用php编写的web应用程序,需运行在php的web容器中,其中apache server是一个针对php web容器,它是apache下的开源项目.通常要运行一个web程序,我们还需要安装数据库软件 ...

  7. NHibernate官方文档中文版--基础ORM(Basic O/R Mapping)

    映射声明 对象/关系映射在XML文件中配置.mapping文件这样设计是为了使它可读性强并且可修改.mapping语言是以对象为中心,意味着mapping是围绕着持久化类声明来建立的,而不是围绕数据表 ...

  8. Android Studio导入第三方库的三种方法

    叨叨在前 今天在项目中使用一个图片选择器的第三方框架——GalleryFinal,想要导入源码,以便于修改,于是上完查找了一下方法,想到之前用到过其他导入第三方库的方法,现在做个小总结,以防忘记. A ...

  9. [转]解决Eclipse更新ADT插件时遇到的Eclipse reports rendering library more recent than ADT plug-in问题

    使用 SDK Manager 工具更新下载新版本后,无法显示可视化布局,同时提示 This version of the rendering library is more recent than y ...

  10. [Java基础] Java enum的用法详解

    用法一:常量 在JDK1.5 之前,我们定义常量都是: public static fianl.... .现在好了,有了枚举,可以把相关的常量分组到一个枚举类型里,而且枚举提供了比常量更多的方法. p ...