CF868F Yet Another Minimization Problem
题目描述:
给定一个序列,要把它分成k个子序列。每个子序列的费用是其中相同元素的对数。求所有子序列的费用之和的最小值。
输入格式:第一行输入n(序列长度)和k(需分子序列段数)。下一行有n个数,序列的每一个元素。
输出格式:输出一个数,费用和的最小值。
2<=n<=10^5,2<=k<=min(n,20),序列的每一个元素值大于等于1,小于等于n。
Solution
思路还是比较单纯
\]
有m次每次是\(O(n)\)的转移.
可以利用决策单调性转移.
方法是将区间从中间分开.
找到分界点的决策点.
这样原区间和决策区间都被一份为二.
于是递归处理
就是实在有点麻烦.
Code
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
const int N = 100005;
const int inf = 0x3f3f3f3f;
using std:: fill;
using std:: swap;
using std:: min;
using std:: max;
int A[N];
long long f[N];
long long g[N];
int B[N];
void solve(int l, int r, int L, int R, long long P) {
if (l > r) return ;
int m = l + r >> 1;
int p = min(m, R);
int M = 0;
for (int i = l; i <= m; i += 1) P += B[A[i]], B[A[i]] += 1;
for (int i = L; i <= p; i += 1)
P -= (B[A[i]] -= 1), g[i] + P < f[m] ? M = i, f[m] = g[i] + P : 0;
for (int i = l; i <= m; i += 1) P -= (B[A[i]] -= 1);
for (int i = L; i <= p; i += 1) P += B[A[i]], B[A[i]] += 1;
solve(l, m - 1, L, M, P);
for (int i = L; i < M; i += 1) P -= (B[A[i]] -= 1);
for (int i = l; i <= m; i += 1) P += B[A[i]], B[A[i]] += 1;
solve(m + 1, r, M, R, P);
for (int i = l; i <= m; i += 1) B[A[i]] -= 1;
for (int i = L; i < M; i += 1) B[A[i]] += 1;
}
int main () {
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i += 1)
scanf("%d", &A[i]);
for (int i = 1; i <= n; i += 1)
g[i] = g[i - 1] + B[A[i]], B[A[i]] += 1;
memset(B, false, sizeof B);
for (int i = 1; i <= m; i += 1) {
memset(f, 0x3f, sizeof f);
solve(1, n, 1, n, 0);
swap(f, g);
}
printf("%lld\n", f[n]);
return 0;
}
CF868F Yet Another Minimization Problem的更多相关文章
- CF868F Yet Another Minimization Problem 分治决策单调性优化DP
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...
- 洛谷CF868F Yet Another Minimization Problem(动态规划,决策单调性,分治)
洛谷题目传送门 貌似做所有的DP题都要先搞出暴力式子,再往正解上靠... 设\(f_{i,j}\)为前\(i\)个数分\(j\)段的最小花费,\(w_{l,r}\)为\([l,r]\)全在一段的费用. ...
- cf868F. Yet Another Minimization Problem(决策单调性 分治dp)
题意 题目链接 给定一个长度为\(n\)的序列.你需要将它分为\(m\)段,每一段的代价为这一段内相同的数的对数,最小化代价总和. \(n<=10^5,m<=20\) Sol 看完题解之后 ...
- CF868F Yet Another Minimization Problem(决策单调性)
题目描述:给定一个序列,要把它分成k个子序列.每个子序列的费用是其中相同元素的对数.求所有子序列的费用之和的最小值. 输入格式:第一行输入n(序列长度)和k(需分子序列段数).下一行有n个数,序列的每 ...
- CF868 F. Yet Another Minimization Problem 决策单调优化 分治
目录 题目链接 题解 代码 题目链接 CF868F. Yet Another Minimization Problem 题解 \(f_{i,j}=\min\limits_{k=1}^{i}\{f_{k ...
- Codeforces 868F Yet Another Minimization Problem 决策单调性 (看题解)
Yet Another Minimization Problem dp方程我们很容易能得出, f[ i ] = min(g[ j ] + w( j + 1, i )). 然后感觉就根本不能优化. 然后 ...
- CF 868 F. Yet Another Minimization Problem
F. Yet Another Minimization Problem http://codeforces.com/contest/868/problem/F 题意: 给定一个长度为n的序列.你需要将 ...
- Codeforces 868F Yet Another Minimization Problem(分治+莫队优化DP)
题目链接 Yet Another Minimization Problem 题意 给定一个序列,现在要把这个序列分成k个连续的连续子序列.求每个连续子序列价值和的最小值. 设$f[i][j]$为前 ...
- Yet Another Minimization Problem
Yet Another Minimization Problem 一个很显然的决策单调性. 方程是很显然的 $ f_i = \min{f_{j-1} + w(j,i)} $ . 它具有决策单调性,可以 ...
随机推荐
- [bzoj] 2657 ZJOI2012 旅游 || bfs
原题 题意: 一个多边形,三角剖分,求一条对角线最多能经过多少三角形 题解: 因为不涉及坐标之类的,所以根几何肯定一点关系都没有. 我们会发现,对于有共边的两个三角形,可以被同一条线穿过,而这就相当于 ...
- 【DP】【P2340】奶牛会展
传送门 Description 奶牛想证明它们是聪明而风趣的.为此,贝西筹备了一个奶牛博览会,她已经对N 头奶牛进行了面试,确定了每头奶牛的智商和情商. 贝西有权选择让哪些奶牛参加展览.由于负的智商或 ...
- LoadRunner中的IP欺骗
应用程序服务器和网络设备使用IP地址来识别客户端.应用程序服务器通常会对来自同一计算机的客户端信息进行高速缓存. 网络路由器尝试对原信息和目标信息进行高速缓存以优化吞吐量.如果多个用户具有相同的IP地 ...
- Spring源码解析-JdbcTemplate
JdbcTemplate类图 从类继承关系上来看,JdbcTemplate继承了基类JdbcAccessor和接口类JdbcOperation,在基类JdbcAccessor的设计中,对DataSou ...
- Educational Codeforces Round 61 (Rated for Div. 2) D,F题解
D. Stressful Training 题目链接:https://codeforces.com/contest/1132/problem/D 题意: 有n台电脑,每台电脑都有初始电量ai,也有一个 ...
- bzoj 2654 tree 二分+kruskal
tree Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 2739 Solved: 1126[Submit][Status][Discuss] Des ...
- 顺序统计:寻找序列中第k小的数
最直观的解法,排序之后取下标为k的值即可. 但是此处采取的方法为类似快速排序分块的方法,利用一个支点将序列分为两个子序列(支点左边的值小于支点的值,支点右边大于等于支点的值). 如果支点下标等于k,则 ...
- C#中static void Main(string[] args)的含义
static:是将main方法声明为静态的. void:说明main方法不会返回任何内容. String[]args:这是用来接收命令行传入的参数,String[]是声明args是可以存储字符串数组. ...
- swiper 、css3制作移动端网站,折叠导航
swiper .css3制作移动端网站,折叠导航 前几天公司要更新改版移动端的官网,由于网站本身没有多少内容,所以设计师就做成了整屏滑动的样子,起初我并没有看设计稿就一口答应了,拿到手后发现了几个问题 ...
- windows版本redis下载安装
官方网站:http://redis.io/ 官方下载:http://redis.io/download 可以根据需要下载不同版本 在官方下载网页中有一个window版本的说明,说redis官方没有wi ...