Luogu P2016 战略游戏(树形DP)
题解
设$f[u][0/1/2]$表示当前节点$u$,放或不放($0/1$)时其子树满足题目要求的最小代价,$2$表示$0/1$中的最小值。
则有:
$$
f[u][0]=\sum_{v\in son[u]}f[v][1]\
f[u][1]=\sum_{v\in son[u]}f[v][2]\
f[u][2]=min(f[u][0],f[u][1])
$$
$O(n)$即可
PS:作者在写代码时忘记找根节点了,但是数据太水,默认$0$为根节点了。在写这种题时记得寻找根节点!!
代码
#include <cstdio>
#include <algorithm>
using std::min;
typedef long long ll;
const int N = 1.5e3 + 10, Inf = 1e9 + 7;
int n, f[N][3];
int cnt, from[N], to[N], nxt[N];//Edges
inline void addEdge(int u, int v) {
to[++cnt] = v, nxt[cnt] = from[u], from[u] = cnt;
}
void dp(int u) {
f[u][1] = 1, f[u][0] = 0;
for(int i = from[u], v; i; i = nxt[i])
v = to[i], dp(v), f[u][1] += f[v][2], f[u][0] += f[v][1];
f[u][2] = min(f[u][1], f[u][0]);
}
int main () {
scanf("%d", &n);
for(int i = 1, u, tot; i <= n; ++i) {
scanf("%d%d", &u, &tot);
for(int j = 1, v; j <= tot; ++j)
scanf("%d", &v), addEdge(u, v);
}
dp(0);
printf("%d\n", f[0][2]);
return 0;
}
Luogu P2016 战略游戏(树形DP)的更多相关文章
- P2016 战略游戏——树形DP大水题
P2016 战略游戏 树形DP 入门题吧(现在怎么是蓝色标签搞不懂): 注意是看见每一条边而不是每一个点(因为这里错了好几次): #include<cstdio> #include< ...
- [洛谷P2016] 战略游戏 (树形dp)
战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得 ...
- P2016 战略游戏 (树形DP)
题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能 ...
- $loj10156/$洛谷$2016$ 战略游戏 树形$DP$
洛谷loj Desription Bob 喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的方法.现在他有个问题. 现在他有座古城堡,古城堡的路形成一棵树.他要在这棵树的节点上放置最少数 ...
- 【题解】Luogu p2016 战略游戏 (最小点覆盖)
题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能 ...
- luogu P2016 战略游戏
嘟嘟嘟 树形dp水题啦. 刚开始以为和[SDOI2006]保安站岗这道题一样,然后交上去WA了. 仔细想想还是有区别的,一个是能看到相邻点,一个是能看到相邻边.对于第一个,可以(u, v)两个点都不放 ...
- 洛谷P2016 战略游戏
P2016 战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目 ...
- 洛谷P2016战略游戏
传送门啦 战略游戏这个题和保安站岗很像,这个题更简单,这个题求的是士兵人数,而保安站岗需要求最优价值. 定义状态$ f[u][0/1] $ 表示 $ u $ 这个节点不放/放士兵 根据题意,如果当前节 ...
- 邱老师玩游戏(树形DP) UESTC - 1136
邱老师最近在玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中邱老师允许攻克M个城堡并获得里面的宝物. 但由于地理位置原因,有些城堡不能直接攻克,要攻克这些城堡必须先攻克其 ...
随机推荐
- c# “XXX::Invoke”类型的已垃圾回收委托进行了回调。这可能会导致应用程序崩溃、损坏和数据丢失。向非托管代码传递委托时,托管应用程序必须让这些委托保持活动状态,直到确信不会再次调用它们。
症状描述如下: 如果将一个委托作为函数指针从托管代码封送到非托管代码,并且在对该委托进行垃圾回收后对该函数指针发出了一个回调,则将激活 callbackOnCollectedDelegate 托管调试 ...
- mysql无法通过ip地址链接
用BitNami搭建个站点(内含mysql数据库服务.phpmyadmin和Apache web Service), 用localhost或127.0.0.1及用户名密码连接没有问题.但是本机或远程通 ...
- 安装在Linux下的jenkins执行windows下的bat命令
launch method里面没有 launch agent via java web start 默认是disable 需要改成random 转载自: http://blog.csdn.net/so ...
- java在不同系统有不同的换行符
//从当前系统中获取换行符,默认是"\n" String lineSeparator = System.getProperty("line.separator" ...
- Windows下端口占用查看
假如我们需要确定谁占用了我们的80端口 1.Windows平台在windows命令行窗口下执行:C:\>netstat -aon|findstr "80" TCP 1 ...
- 【STSRM10】数学上来先打表
[算法]DP+数学计数 [题意]给出n个点(不同点之间有区别),求出满足下列条件的连边(双向边)方案(对1004535809取模): 1.每条边连接两个不同的点,每两个点之间至多有一条边. 2.不存在 ...
- 【51NOD-0】1046 A^B Mod C
[算法]快速幂运算 [题解]快速幂的原理是把幂用二进制表示,从最低位a,次低位a2,次次低位(a2)2. #include<cstdio> long long quick_pow(long ...
- 教你 Shiro 整合 SpringBoot,避开各种坑(山东数漫江湖)
依赖包 <dependency> <groupId>org.apache.shiro</groupId> <artifactId>shiro-sprin ...
- hadoop+spark 集群的安装
1.安装连接 https://www.cnblogs.com/zengxiaoliang/p/6478859.html
- 【Python学习】解决pandas中打印DataFrame行列显示不全的问题
在使用pandas的DataFrame打印时,如果表太长或者太宽会自动只给前后一些行列,但有时候因为一些需要,可能想看到所有的行列. 所以只需要加一下的代码就行了. #显示所有列 pd.set_opt ...