BZOJ 2818 Gcd(莫比乌斯反演)
【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=2818
【题目大意】
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对.
【题解】
反演简单题。
【代码】
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N=10000010;
namespace Mobius{
int tot,p[N],miu[N],sum[N],v[N];
void mobius(int n){
int i,j;
for(miu[1]=1,i=2;i<=n;i++){
if(!v[i])p[tot++]=i,miu[i]=-1;
for(j=0;j<tot&&i*p[j]<=n;j++){
v[i*p[j]]=1;
if(i%p[j])miu[i*p[j]]=-miu[i];else break;
}
}
}
void cal_sum(){
int j,k;
for(int i=0;i<tot;i++)for(j=k=p[i];j<N;j+=k)sum[j]+=miu[j/k];
for(int i=1;i<N;i++)sum[i]+=sum[i-1];
}
LL Cal(int n,int m){
LL t=0;
if(n>m)swap(n,m);
for(int i=1,j=0;i<=n;i=j+1)
j=min(n/(n/i),m/(m/i)),t+=(LL)(sum[j]-sum[i-1])*(n/i)*(m/i);
return t;
}
void Initialize(int n){
mobius(n);
cal_sum();
}
}
int n;
int main(){
scanf("%d",&n);
Mobius::Initialize(n);
printf("%lld\n",Mobius::Cal(n,n));
return 0;
}
BZOJ 2818 Gcd(莫比乌斯反演)的更多相关文章
- BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 2534 Solved: 1129 [Submit][Status][Discu ...
- Bzoj 2818: Gcd(莫比乌斯反演)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对 ...
- $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数
正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...
- Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3241 Solved: 1437[Submit][Status][Discuss ...
- HYSBZ - 2818 Gcd (莫比乌斯反演)
莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- bzoj [SDOI2014]数表 莫比乌斯反演 BIT
bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...
- bzoj 2818 Gcd(欧拉函数 | 莫比乌斯反演)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2818 [题意] 问(x,y)为质数的有序点对的数目. [思路一] 定义f[i]表示i之 ...
- BZOJ 2818 GCD 【欧拉函数 || 莫比乌斯反演】
传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 2818: Gcd Time Limit: 10 Sec Memory Limit ...
- BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...
随机推荐
- Javascript prototype 及 继承机制的设计思想
我一直很难理解Javascript语言的继承机制. 它没有"子类"和"父类"的概念,也没有"类"(class)和"实例" ...
- (Git 钩子)自定义你的工作流 和引用日志
Git 钩子是在 Git 仓库中特定事件发生时自动运行的脚本.它可以让你自定义 Git 内部的行为,在开发周期中的关键点触发自定义的行为. Git 钩子最常见的使用场景包括推行提交规范,根据仓库状态改 ...
- 数字签名算法rsa
数字签名算法消息传递模型 由消息发送方构建密钥对,这里由甲方完成. 由消息发送方公布公钥至消息接收方,这里由甲方将公钥公布给乙方. 注意如加密算法区别,这里甲方使用私钥对数据签名,数据与签名形成一则消 ...
- 报错注入遇到ERROR 1242 (21000): Subquery returns more than 1 row解决方案
我的SQL语句是这样写的. mysql> select 1,2,3 and updatexml(1,concat(1,(select user from mysql.user),1),1);ER ...
- Eclipse svn 忽略文件夹/ svn 设置不同步
Eclipse 开发中我们经常用到SVN插件, 但是对于某些文件的缓存来说, 我们只要有操作缓存便会保存一次, 每次提交很是麻烦, 小编这里教你一种不同步某个文件夹的方法 工具/原料 MyEclips ...
- Vue组件-组件的属性
在html中使用元素,会有一些属性,如class,id,还可以绑定事件,自定义组件也是可以的.当在一个组件中,使用了其他自定义组件时,就会利用子组件的属性和事件来和父组件进行数据交流. 比如,子组件需 ...
- yum安装的Apache的各种配置文件的位置
//配置文件 /etc/httpd/conf /etc/httpd/conf.d /etc/httpd/conf.d/README /etc/httpd/conf.d/proxy_ajp.conf / ...
- Tomcat debug模式下特别慢但是run正常处理方法
转载自:http://blog.csdn.net/builderwfy/article/details/50785749 到网上查资料发现这是由eclipse和tomcat交互时,在debug模式启动 ...
- ajax之深入解析(1)
AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML).AJAX 是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术. AJ ...
- Restful Framework 初识
目录 一.什么是RESTful 二.什么是API 三.RESTful API规范 四.基于Django实现API 五.基于Django Rest Framework框架实现 一. 什么是RESTful ...