【UOJ #34】多项式乘法
http://uoj.ac/problem/34
看了好长时间的FFT和NTT啊qwq在原根那块磨蹭了好久_(:з」∠)_
首先设答案多项式的长度拓展到2的幂次后为n,我们只要求出一个g(不是原根)满足\(i\in \{1\dots n\},g^i\)互不相同,且\(g^n=1\)。
把这个g当做“FFT里面的主n次单位根”的类似物。
而且\(g^{\frac n2}=-1\),因为\(g^{\frac n2}\)与\(g^n\)不相同且\((g^{\frac n2})^2=g^n=1\),所以\(g^{\frac n2}\)只能是-1。
剩下的只要选一个够大的模数满足答案多项式的所有系数都小于这个模数就可以了。
我选的模数是998244353(\(7×17×2^{23}+1\),一个质数,UOJ模数)。不是所有的模数p都可以,像\(10^9+7\)就不可以,因为此时p-1的因子2的指数不够大。只有p-1的因子2的指数c足够大,\(2^c>n\)时才可以。
这里我写了一个暴力找到了一个g=646。
//998244353
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int p = 998244353;
const int n = 1048576;
bool can[p];
int main() {
bool flag = false;
for (int num = 1; num < p; ++num) {
ll re = num;
flag = true;
for (int i = 1; i <= n; ++i) {
if (can[re]) {flag = false; break;}
can[re] = true;
re = re * num % p;
}
if (!flag || re != num) {
re = num;
for (int i = 1; i <= n; ++i) {
if (can[re]) can[re] = false;
re = re * num % p;
}
continue;
}
printf("%d\n", num);
return 0;
}
/*
freopen("tab.txt", "w", stdout);
int num = 646; ll ret = 1;
for (int i = 1; i <= (n >> 1); ++i) {
ret = ret * num % p;
printf("%d %I64d \n", i, ret);
}
*/
}
求出g后就可以NTT了,不过也需要预处理一些分治实现NNT时(一般是迭代实现,这里也是)n不断除2变小需要用到的不同的“主n次单位根”和“主n次单位根的逆元”。
一开始我对原根(及主n次单位根)的定义比较模糊,没有预处理“主n次单位根”的逆元而直接用负的“主n次单位根”导致逆DNNT出错qwq
NTT有取模果然慢啊,不过没有FFT的复数精度误差。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int p = 998244353;
const int N = 1048576;
const int g = 646;
int rev[N], WN[23], nWN[23], n;
int ipow(int a, int b) {
int ret = 1, w = a;
while (b) {
if (b & 1) ret = 1ll * ret * w % p;
w = 1ll * w * w % p;
b >>= 1;
}
return ret;
}
void DNT(int *a, int *A, int flag) {
for (int i = 0; i < n; ++i) A[rev[i]] = a[i];
int tmp = 1;
for (int m = 2; m <= n; m <<= 1, ++tmp) {
int mid = m >> 1, wn = flag == 1 ? WN[tmp] : nWN[tmp];
for (int i = 0; i < n; i += m) {
int w = 1;
for (int j = 0; j < mid; ++j) {
int t = A[i + j], u = 1ll * A[i + j + mid] * w % p;
A[i + j] = (t + u) % p;
A[i + j + mid] = (t - u + p) % p;
w = 1ll * w * wn % p;
}
}
}
if (flag == -1) {
int ni = ipow(n, p - 2);
for (int i = 0; i < n; ++i)
A[i] = 1ll * A[i] * ni % p;
}
}
int da[N], db[N], dc[N];
void NTT(int *a, int lena, int *b, int lenb, int *ans, int n) {
DNT(a, da, 1); DNT(b, db, 1);
for (int i = 0; i < n; ++i) dc[i] = 1ll * da[i] * db[i] % p;
DNT(dc, ans, -1);
}
void init() {
WN[20] = g; nWN[20] = ipow(g, p - 2);
for (int i = 19; i >= 1; --i) {
WN[i] = 1ll * WN[i + 1] * WN[i + 1] % p;
nWN[i] = ipow(WN[i], p - 2);
}
int num = n, tot = 0, res;
while (num) {++tot; num >>= 1;}
n = 1 << tot;
for (int i = 0; i < n; ++i) {
num = i; res = 0;
for (int j = tot - 1; j >= 0; --j) {
if (num & 1) res |= (1 << j);
num >>= 1;
}
rev[i] = res;
}
}
int lena, lenb, a[N >> 1], b[N >> 1], ans[N];
int main() {
scanf("%d%d", &lena, &lenb); ++lena; ++lenb;
for (int i = 0; i < lena; ++i) scanf("%d", a + i);
for (int i = 0; i < lenb; ++i) scanf("%d", b + i);
n = lena + lenb - 1;
init();
NTT(a, lena, b, lenb, ans, n);
int totlen = lena + lenb - 1;
for (int i = 0; i < totlen; ++i) printf("%d ", ans[i]);
puts("");
return 0;
}
一个板子都写了这么长时间省选是要滚粗吗→_→
【UOJ #34】多项式乘法的更多相关文章
- [UOJ#34]多项式乘法
[UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...
- ●UOJ 34 多项式乘法
题链: http://uoj.ac/problem/34 题解: FFT入门题. (终于接触到迷一样的FFT了) 初学者在对复数和单位根有简单了解的基础上,可以直接看<再探快速傅里叶变换> ...
- UOJ#34. 多项式乘法(NTT)
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- 【刷题】UOJ #34 多项式乘法
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 \(n\) 和 \(m\) ,分别表示两个多项式的次数. 第二行 \(n+1\) 个整数,表示第一个多项式的 \( ...
- UOJ 34 多项式乘法 FFT 模板
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- 2018.11.14 uoj#34. 多项式乘法(ntt)
传送门 今天学习nttnttntt. 其实递归方法和fftfftfft是完全相同的. 只不过fftfftfft的单位根用的是复数中的东西,而nttnttntt用的是数论里面有相同性质的原根. 代码: ...
- 2018.11.14 uoj#34. 多项式乘法(fft)
传送门 NOIpNOIpNOIp爆炸不能阻止我搞oioioi的决心 信息技术课进行一点康复训练. fftfftfft板题. 代码: #include<bits/stdc++.h> usin ...
- UOJ 34 多项式乘法 ——NTT
[题目分析] 快速数论变换的模板题目. 与fft的方法类似,只是把复数域中的具有循环性质的单位复数根换成了模意义下的原根. 然后和fft一样写就好了,没有精度误差,但是跑起来比较慢. 这破题目改了好长 ...
- UOJ 34: 多项式乘法(FFT模板题)
关于FFT 这个博客的讲解超级棒 http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transfor ...
- [UOJ 0034] 多项式乘法
#34. 多项式乘法 统计 描述 提交 自定义测试 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+ ...
随机推荐
- 【BZOJ4869】相逢是问候 [线段树][欧拉定理]
相逢是问候 Time Limit: 40 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description Informatikverbin ...
- 【BZOJ】1578: [Usaco2009 Feb]Stock Market 股票市场
[题意]给定s个股票和d天,给出价格矩阵s*d,每天可以买入或卖出整数倍股票,初始资金m,求最大利益.m<=200000,s<=50,d<=10. [算法]完全背包 [题解]关键在于 ...
- 【BZOJ】3895: 取石子
[算法]博弈论+记忆化搜索 [题意]给定n堆石子,两人轮流操作,每个人可以合并两堆石子或拿走一个石子,不能操作者输,问是否先手必胜 [题解] 首先,若所有石子堆的石子数>1,显然总操作数为(石子 ...
- luaj luaoc 回调函数传递的一些小总结
问题场景:我们的游戏在支付时,由于第三方支付比较费时,可能在支付的过程中,我们lua写的cocos2dx项目会断网,我们的游戏有自动重连的机制.我就想,如果断线好了以后,支付完成了,那在断网之前传入的 ...
- 【HNOI】 c tree-dp
[题目描述]给定一个n个节点的树,每个节点有两个属性值a[i],b[i],我们可以在树中选取一个连通块G,这个连通块的值为(Σa[x])(Σb[x]) x∈G,求所有连通块的值的和,输出答案对1000 ...
- Windows下基于python3使用word2vec训练中文维基百科语料(三)
对前两篇获取到的词向量模型进行使用: 代码如下: import gensim model = gensim.models.Word2Vec.load('wiki.zh.text.model') fla ...
- python基础===trheading 模块
'''threading模块''' import threading import time def music(func): for i in range(2): print("[+]i ...
- CentOS在ssh下远程重装系统
CentOS在ssh下远程重装系统 http://www.zxsdw.com/index.php/archives/913/ 国外VPS服务器一般都有控制面板,有很多种系统可自行安装,但国内有些IDC ...
- delphi2006语言新特性:Record类型高级用法
delphi语言在传统的Records类型的基础上增加了许多像类一样的高级功能,如:Records可以有属性和方法(包括构造constructors),类属性,类方法,类静态字段和内嵌类型.下面这个示 ...
- 经典卷积网络模型 — LeNet模型笔记
LeNet-5包含于输入层在内的8层深度卷积神经网络.其中卷积层可以使得原信号特征增强,并且降低噪音.而池化层利用图像相关性原理,对图像进行子采样,可以减少参数个数,减少模型的过拟合程度,同时也可以保 ...