深度学习框架TensorFlow在Kubernetes上的实践
什么是TensorFlow
TensorFlow是谷歌在去年11月份开源出来的深度学习框架。开篇我们提到过AlphaGo,它的开发团队DeepMind已经宣布之后的所有系统都将基于TensorFlow来实现。TensorFlow一款非常强大的开源深度学习开源工具。它可以支持手机端、CPU、GPU以及分布式集群。TensorFlow在学术界和工业界的应用都非常广泛。在工业界,基于TensorFlow开发的谷歌翻译、谷歌RankBrain等系统都已经上线。在学术界很多我在CMU、北大的同学都表示TensorFlow是他们实现深度学习算法的首选工具。

上面的ppt给出了一个简单的TensorFlow程序样例,这个样例实现了向量加法的功能。TensorFlow提供了Python和C++的API,但Python的API更全面,所以大部分TensorFlow程序都是通过Python实现的。在上面程序的第一行我们通过import将TensorFlow加载进来。在TensorFlow中所有的数据都是通过张量(Tensor)的方式存储,要计算张量中数据的具体取值,我们需要通过一个会话(session)。
上面代码中的第二行展示了如何生成会话。会话管理运行一个TensorFlow程序所需要的计算资源。TensorFlow中一个比较特殊的张量是变量(tf.Variable),在使用变量之前,我们需要明确调用变量初始化的过程。在上面的代码最后一行,我们可以看到要得到结果张量output的取值,我们需要明确调用计算张量取值的过程。

通过TensorFlow实现神经网络是非常简单的。通过TFLearn或者TensorFlow-Slim可以在10行之内实现MNIST手写体数字识别问题。上面的ppt展示了TensorFlow对于不同神经网络结构的支持,可以看出,TensorFlow可以在很短的代码内支持各种主要的神经网络结构。
虽然TensorFlow可以很快的实现神经网络的功能,不过单机版的TensorFlow却很难训练大规模的深层神经网络。

这张图给出了谷歌在2015年提出的Inception-v3模型。这个模型在ImageNet数据集上可以达到95%的正确率。然而,这个模型中有2500万个参数,分类一张图片需要50亿次加法或者乘法运算。即使只是使用这样大规模的神经网络已经需要非常大的计算量了,如果需要训练深层神经网络,那么需要更大的计算量。神经网络的优化比较复杂,没有直接的数学方法求解,需要反复迭代。在单机上要把Inception-v3模型训练到78%的准确率大概需要5个多月的时间。如果要训练到95%的正确率需要数年。这对于实际的生产环境是完全无法忍受的。
TensorFlow on Kubernetes
如我们上面所介绍的,在单机环境下是无法训练大型的神经网络的。在谷歌的内部,Google Brain以及TensorFlow都跑在谷歌内部的集群管理系统Borg上。我在谷歌电商时,我们使用的商品分类算法就跑在1千多台服务器上。在谷歌外,我们可以将TensorFlow跑在Kubernetes上。在介绍如何将TensorFlow跑在Kubernetes上之前,我们先来介绍一下如何并行化的训练深度学习的模型。

深度学习模型常用的有两种分布式训练方式。一种是同步更新,另一种是异步更新。如上面的ppt所示,在同步更新模式下,所有服务器都会统一读取参数的取值,计算参数梯度,最后再统一更新。而在异步更新模式下,不同服务器会自己读取参数,计算梯度并更新参数,而不需要与其他服务器同步。同步更新的最大问题在于,不同服务器需要同步完成所有操作,于是快的服务器需要等待慢的服务器,资源利用率会相对低一些。而异步模式可能会使用陈旧的梯度更新参数导致训练的效果受到影响。不同的更新模式各有优缺点,很难统一的说哪一个更好,需要具体问题具体分析。
无论使用哪种更新方式,使用分布式TensorFlow训练深度学习模型需要有两种类型的服务器,一种是参数服务器,一种是计算服务器。参数服务器管理并保存神经网络参数的取值;计算服务器负责计算参数的梯度。
在TensorFlow中启动分布式深度学习模型训练任务也有两种模式。一种为In-graph replication。在这种模式下神经网络的参数会都保存在同一个TensorFlow计算图中,只有计算会分配到不同计算服务器。另一种为Between-graph replication,这种模式下所有的计算服务器也会创建参数,但参数会通过统一的方式分配到参数服务器。因为In-graph replication处理海量数据的能力稍弱,所以Between-graph replication是一个更加常用的模式。

最后一个问题,我们刚刚提到TensorFlow是支持以分布式集群的方式运行的,那么为什么还需要Kubernetes?如果我们将TensorFlow和Hadoop系统做一个简单的类比就可以很清楚的解释这个问题。大家都知道Hadoop系统主要可以分为Yarn、HDFS和mapreduce计算框架,那么TensorFlow就相当于只是Hadoop系统中Mapreduce计算框架的部分。
TensorFlow没有类似Yarn的调度系统,也没有类似HDFS的存储系统。这就是Kubernetes需要解决的部分。Kubernetes可以提供任务调度、监控、失败重启等功能。没有这些功能,我们很难手工的去每一台机器上启动TensorFlow服务器并时时监控任务运行的状态。除此之外,分布式TensorFlow目前不支持生命周期管理,结束的训练进程并不会自动关闭,这也需要进行额外的处理。
深度学习框架TensorFlow在Kubernetes上的实践的更多相关文章
- 金玉良缘易配而木石前盟难得|M1 Mac os(Apple Silicon)天生一对Python3开发环境搭建(集成深度学习框架Tensorflow/Pytorch)
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_189 笔者投入M1的怀抱已经有一段时间了,俗话说得好,但闻新人笑,不见旧人哭,Intel mac早已被束之高阁,而M1 mac已经 ...
- 截图:【炼数成金】深度学习框架Tensorflow学习与应用
创建图.启动图 Shift+Tab Tab 变量介绍: F etch Feed 简单的模型构造 :线性回归 MNIST数据集 Softmax函数 非线性回归神经网络 MINIST数据集分类器简单版 ...
- Ubuntu16.04搭建深度学习框架——TensorFlow
TensorFlow是一个采用数据流图(data flow graphs),用于数值计算的开源软件库,说白了,就是一个库. 小编自己在Ubuntu搭建了深度学习框架TensorFlow,感觉挺简单,现 ...
- 关于深度学习框架 TensorFlow、Theano 和 Keras
[TensorFlow] ——( https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/) 1.TensorFlow是啥 ...
- 一文全解:利用谷歌深度学习框架Tensorflow识别手写数字图片(初学者篇)
笔记整理者:王小草 笔记整理时间2017年2月24日 原文地址 http://blog.csdn.net/sinat_33761963/article/details/56837466?fps=1&a ...
- 深度学习框架Tensorflow应用(Google工程师)
首先在这里给大家分享Google工程师亲授 Tensorflow2.0-入门到进阶教程 有需要的小伙伴可点击进入扣群下载,群内不定期的会分享资料教程,点击直达链接:https://jq.qq.com/ ...
- TensorFlow与主流深度学习框架对比
引言:AlphaGo在2017年年初化身Master,在弈城和野狐等平台上横扫中日韩围棋高手,取得60连胜,未尝败绩.AlphaGo背后神秘的推动力就是TensorFlow--Google于2015年 ...
- 转:TensorFlow和Caffe、MXNet、Keras等其他深度学习框架的对比
http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自Tens ...
- 深度学习与CV教程(8) | 常见深度学习框架介绍
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...
随机推荐
- [Navicat] 常用快捷键及注意事项
近来需要同时管理多种类型.多台server的数据库,在经历了各种查询客户端(SSMS, SQLyog, PL/SQL等)的不断切换,ip/user/pwd的反复输入的这种自虐式体验后,实在无法忍受,就 ...
- 并发编程5 操作系统&进程
一.今日大纲 1.multiprocessing模块简单应用 2.for循环创建进程 3.进程传参方式和创建方式2 4.join方法 5.操作系统基础 二.今日内容 (1)操作系统简单介绍 多道技术: ...
- golang的多协程实践
go语言以优异的并发特性而闻名,刚好手上有个小项目比较适合. 项目背景: 公司播控平台的数据存储包括MySQL和ElasticSearch(ES)两个部分,编辑.运营的数据首先保存在MySQL中,为了 ...
- mysql增量恢复的一个实例操作
通过防火墙禁止web等应用向主库写数据或者锁表,让主库暂时停止更新,然后进行恢复 模拟整个场景 1.登录数据库 [root@promote 3306]# mysql -uroot -S /data/3 ...
- EXSITS应该怎么用?
无论是做项目还是普通使用SQL,我们通常都会使用IN.因为很好理解,也很方便.但是,面对着多层查询嵌套,或者IN关键字里面的结果集数量巨大,查询的效率就会直线下降.这时候,我们应该用好EXSITS. ...
- vscode 编写c++
参考了 配置文件之前的操作:https://www.cnblogs.com/lianshuiwuyi/p/8094388.html 配置文件具体内容:https://blog.csdn.net/qq5 ...
- Levenshtein距离
Levenshtein Distance,又称Edit Distance,在自然语言处理中有着广泛的应用.Levenshtein Distance 指的是两个字符串之间,由一个转换成另一个所需的最少 ...
- ZOJ - 3593 One Person Game (扩展欧几里得)
题意:一个人在坐标A,要前往坐标B的位置.可以往左或往右走a,b,a+b个单位,求到达B的最小步数. 分析:扩展欧几里得算法求解线性方程的套路不变.令C=fabs(A-B),c = a+b, 扩展gc ...
- POJ - 1904 King's Quest (强连通)
题意:有N个王子,每个王子有任意个喜欢的妹子,巫师会给出一个方案:每个妹子都嫁给一个王子.但是国王希望知道:每个王子能在哪些妹子中择偶而不影响其他王子择偶. 分析:设王子为x部,妹子为y部,假设有匹配 ...
- 使用sqoop把mysql数据导入hive
使用sqoop把mysql数据导入hive export HADOOP_COMMON_HOME=/hadoop export HADOOP_MAPRED_HOME=/hadoop cp /hive ...