PAT 1009 Product of Polynomials 模拟
This time, you are supposed to find A*B where A and B are two polynomials.
Input Specification:
Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial: K N1 aN1 N2 aN2 … NK aNK, where K is the number of nonzero terms in the polynomial, Ni and aNi (i=1, 2, …, K) are the exponents(指数) and coeficients(系数), respectively. It is given that 1 <= K <= 10, 0 <= NK < … < N2 < N1 <=1000.
Output Specification:
For each test case you should output the product of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate up to 1 decimal place.
Sample Input
2 1 2.4 0 3.2
2 2 1.5 1 0.5
Sample Output
3 3 3.6 2 6.0 1 1.6
题目意思:给你两个多项式A和B,求A*B的结果。
解题思路:两个多项式相乘,系数coeficients相乘,指数exponents相加,模拟一下即可。这里由于指数是连续的,系数不连续且是小数,所以可以用数组来保存多项式,指数作为数组下标,系数保存到数组中。最后按照指数递减的顺序输出所有的不为0的项即可。
decimal
adj. 小数的;十进位的
n. 小数
Product
n. 乘积、产物
#include<iostream>
#include<algorithm>
#include<string>
#include<cstdio>
#include<map>
using namespace std;
int main()
{
int n1,n2,cnt=;
int i,j,e;
double c;
double a[]={0.0},ans[]={0.0};
scanf("%d",&n1);
for(i=;i<n1;i++)
{
scanf("%d %lf",&e,&c);
a[e]=c;
}
scanf("%d",&n2);
for(i=;i<n2;i++)
{
scanf("%d %lf",&e,&c);
for(j=;j<;j++)
{
if(a[j]!=)
{
if(a[j]*c>10.0)
{
ans[j+e+]+=(a[j]*c)/10.0;//产生进位
}
else
{
ans[j+e]+=a[j]*c;//系数相乘,指数相加
}
}
}
}
for(i=;i<;i++)
{
if(ans[i]!=)
{
cnt++;
}
}
printf("%d",cnt);//所有不为0的项数数量
for(i=-;i>=;i--)
{
if(ans[i]!=)
{
printf(" %d %.1f",i,ans[i]);
}
}
return ;
}
PAT 1009 Product of Polynomials 模拟的更多相关文章
- PAT 1009 Product of Polynomials
1009 Product of Polynomials (25 分) This time, you are supposed to find A×B where A and B are two p ...
- PAT 1009 Product of Polynomials (25分) 指数做数组下标,系数做值
题目 This time, you are supposed to find A×B where A and B are two polynomials. Input Specification: E ...
- pat 甲级 1009. Product of Polynomials (25)
1009. Product of Polynomials (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yu ...
- PAT甲 1009. Product of Polynomials (25) 2016-09-09 23:02 96人阅读 评论(0) 收藏
1009. Product of Polynomials (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yu ...
- PAT 甲级 1009 Product of Polynomials (25)(25 分)(坑比较多,a可能很大,a也有可能是负数,回头再看看)
1009 Product of Polynomials (25)(25 分) This time, you are supposed to find A*B where A and B are two ...
- PTA (Advanced Level) 1009 Product of Polynomials
1009 Product of Polynomials This time, you are supposed to find A×B where A and B are two polynomial ...
- 1009 Product of Polynomials (25 分)
1009 Product of Polynomials (25 分) This time, you are supposed to find A×B where A and B are two pol ...
- PATA 1009. Product of Polynomials (25)
1009. Product of Polynomials (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yu ...
- 1009 Product of Polynomials (25分) 多项式乘法
1009 Product of Polynomials (25分) This time, you are supposed to find A×B where A and B are two po ...
随机推荐
- 防止DataGridview闪烁
在Load事件中加入 typeof(DataGridView).InvokeMember("DoubleBuffered", BindingFlags.NonPublic | Bi ...
- java基础-数据类型之殇
一 前言 Java的数据类型分为2种,分别是基本数据类型和引用数据类型:java的数据类型是强数据类型,意味着每声明一个变量,其必定有与之对应的数据类型:面试常问的java8大基本数据类型其实是基本数 ...
- css设置使文字显示2行多余的为省略号。。。
.title{ font-size: .7rem; line-height: 1.5rem; overflow: hidden; /** 隐藏超出的内容 **/ word-break: break-a ...
- .Net Core控制台&EFCore连接Mysql
在用惯了Asp.Net Core提供的基架后,反过来想一想,貌似忘记了控制台如何去连接数据库了,因此,写一篇文章来借此巩固下并以后再来回顾时,加快步骤. 1.新建一个.Net Core控制台,然后安装 ...
- Nginx配置实例-反向代理实例:根据访问的路径跳转到不同端口的服务中
场景 Ubuntu Server 16.04 LTS上怎样安装下载安装Nginx并启动: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/detai ...
- 63-容器在 Weave 中如何通信和隔离?
上一节我们分析了 Weave 的网络结构,今天讨论 Weave 的连通和隔离特性. 首先在host2 执行如下命令: weave launch 192.168.0.44 这里必须指定 host1 的 ...
- Mongdb可视化工具Studio 3T的使用
一.官网地址 https://studio3t.com/ 二.下载和安装 点击DOWNLOAD即可下载 按照自己电脑系统进行选择,然后填写邮箱和选择行业,第一次登录如果不提交不会下载,下载完成是一个z ...
- sshfs 相关材料索引
这两天简单看了 sshfs 缓存相关的内容,下面对一些好的链接进行索引,防止以后忘了: OpenSSH: Difference between internal-sftp and sftp-serve ...
- asp.net core 系列 9 三种运行环境和IIS发布
一.在asp.net core中使用多个环境 ASP.NET Core 配置是基于运行时环境, 使用环境变量.ASP.NET Core 在应用启动时读取环境变量ASPNETCORE_ENVIRONME ...
- python 内置函数zip,map,三元,lambda表达式
#内置函数zip(),将多个可迭代对象(集合等)按照顺序进行组合成tuple元祖,放在zip 对象进行存储,: #当参数为空时候,返回空 #如果 zip() 函数压缩的两个列表长度不相等,那么 zip ...