一.混淆矩阵

(一).简介 
在人工智能中,混淆矩阵(confusion matrix)是可视化工具,特别用于监督学习,在无监督学习一般叫做匹配矩阵。在图像精度评价中,主要用于比较分类结果和实际测得值,可以把分类结果的精度显示在一个混淆矩阵里面。混淆矩阵是通过将每个实测像元的位置和分类与分类图像中的相应位置和分类像比较计算的。 
混淆矩阵(confusion matrix)刻画一个分类器的分类准确程度。“混淆”一词也形象地表达了分类器面对多个分类时可能造成的混淆。

(二).混淆矩阵(Confusion Matrix)举例说明

混淆矩阵的每一列代表了预测类别,每一列的总数表示预测为该类别的数据的数目;每一行代表了数据的真实归属类别,每一行的数据总数表示该类别的数据实例的数目。每一列中的数值表示真实数据被预测为该类的数目:如下图,第一行第一列中的43表示有43个实际归属第一类的实例被预测为第一类,同理,第二行第一列的2表示有2个实际归属为第二类的实例被错误预测为第一类。 
举例如下: 
如有150个样本数据,这些数据分成3类,每类50个。分类结束后得到的混淆矩阵为: 
 
每一行之和为50,表示50个样本; 
第一行说明类1的50个样本有43个分类正确,5个错分为类2,2个错分为类3。

二.混淆矩阵的MATLAB实现

(一).数据集如下:

(二).MATLAB实现

1.confusion_matrix1.m文件(在下面主函数中直接调用)

 
%==========================================================
function confusion_matrix1(act1,det1) [mat,order] = confusionmat(act1,det1);
k=max(order); %k为分类的个数 %也可作实验,自己随机产生矩阵
%mat = rand(5); %# A 5-by-5 matrix of random values from 0 to 1
%mat(3,3) = 0; %# To illustrate
%mat(5,2) = 0; %# To illustrate imagesc(mat); %# Create a colored plot of the matrix values
colormap(flipud(gray)); %# Change the colormap to gray (so higher values are %#black and lower values are white)
title('不分性别的分开预测标签与真实标签的混淆矩阵');
textStrings = num2str(mat(:),'%0.02f'); %# Create strings from the matrix values
textStrings = strtrim(cellstr(textStrings)); %# Remove any space padding %% ## New code: ###这里是不显示小矩阵块里的0,用空白代替
% idx = strcmp(textStrings(:), '0.00');
% textStrings(idx) = {' '};
%% ################ %# Create x and y coordinates for the strings %meshgrid是MATLAB中用于生成网格采样点的函数
[x,y] = meshgrid(1:k);
hStrings=text(x(:),y(:),textStrings(:),'HorizontalAlignment','center');
midValue = mean(get(gca,'CLim')); %# Get the middle value of the color range
textColors = repmat(mat(:) > midValue,1,3); %# Choose white or black for the
%# text color of the strings so
%# they can be easily seen over
%# the background color
%将矩阵[mat(:) >midValue]复制1X3块的矢量(颜色值必须为包含3个元素的数值矢量),即把矩阵[mat(:) > midValue]作为矩阵textColors的元素。
set(hStrings,{'Color'},num2cell(textColors,2)); %# Change the text colors;
%num2cell(textColors, 2)中2 代表「直行被切割」将结构阵列转换成异质阵列 将结构阵列转换成异质阵列;
%然后set去重后放在hStrings; %下面这个数字8可根据自己的分类需求进行更改
set(gca,'XTick',1:8,...
'XTickLabel',{'1','2','3','4','5','6','7',8'},... %# and tick labels
'YTick',1:8,... %同上
'YTickLabel',{'1','2','3','4','5','6','7',8'},...
'TickLength',[0 0]);
%==========================================================

  

2.主函数main.m

a=xlsread('confusion_test.xls');
%========================================
%真实标签:
act=a(1:194,2:2);
act1=act'; %性别为男生的分开预测的标签
det=a(1:194,1:1);
det1=det'; %性别为男生的未分开预测的标签
dett=a(1:194,3:3);
dett1=dett';
%这里调用confusion_matrix1()函数求的是‘性别为男生的分开预测的标签与真真实标签的混淆矩阵’
confusion_matrix1(act1,det1)
%==========================================================

 

注意:

ctual:就是我们已知的label。

detected是我们通过模型预测得到的label

结合下面语句实现:

[pred,acc,preb] = svmpredict(double(testLabel), testData, model, '-b 1');

上述程序只需要在confusion_matrix1.m文件中将含有(act1,det1)的参数改成自己需要求的参数,然后在主程序中调用此函数就OK了!(代码可复制直接运行)

3.运行结果:

参考文献: 
[1].https://baike.baidu.com/item/%E6%B7%B7%E6%B7%86%E7%9F%A9%E9%98%B5/10087822?fr=aladdin 
[2].http://blog.csdn.net/songchaomail/article/details/43834741/ 
[3].http://blog.csdn.net/zhaomengszu/article/details/56283832

混淆矩阵-MATLAB代码详解的更多相关文章

  1. mIoU混淆矩阵生成函数代码详解

    代码参考博客原文: https://blog.csdn.net/jiongnima/article/details/84750819 在原文和原文的引用里,找到了关于mIoU详尽的解释.这里重点解析  ...

  2. SVM matlab 代码详解说明

    x=[0 1 0 1 2 -1];y=[0 0 1 1 2 -1];z=[-1 1 1 -1 1 1]; %其中,(x,y)代表二维的数据点,z 表示相应点的类型属性. data=[1,0;0,1;2 ...

  3. 【转】小波与小波包、小波包分解与信号重构、小波包能量特征提取 暨 小波包分解后实现按频率大小分布重新排列(Matlab 程序详解)

    转:https://blog.csdn.net/cqfdcw/article/details/84995904 小波与小波包.小波包分解与信号重构.小波包能量特征提取   (Matlab 程序详解) ...

  4. 代码详解:TensorFlow Core带你探索深度神经网络“黑匣子”

    来源商业新知网,原标题:代码详解:TensorFlow Core带你探索深度神经网络“黑匣子” 想学TensorFlow?先从低阶API开始吧~某种程度而言,它能够帮助我们更好地理解Tensorflo ...

  5. 非极大值抑制(NMS,Non-Maximum Suppression)的原理与代码详解

    1.NMS的原理 NMS(Non-Maximum Suppression)算法本质是搜索局部极大值,抑制非极大值元素.NMS就是需要根据score矩阵和region的坐标信息,从中找到置信度比较高的b ...

  6. Github-jcjohnson/torch-rnn代码详解

    Github-jcjohnson/torch-rnn代码详解 zoerywzhou@gmail.com http://www.cnblogs.com/swje/ 作者:Zhouwan  2016-3- ...

  7. DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解

    本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参 ...

  8. BM算法  Boyer-Moore高质量实现代码详解与算法详解

    Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...

  9. ASP.NET MVC 5 学习教程:生成的代码详解

    原文 ASP.NET MVC 5 学习教程:生成的代码详解 起飞网 ASP.NET MVC 5 学习教程目录: 添加控制器 添加视图 修改视图和布局页 控制器传递数据给视图 添加模型 创建连接字符串 ...

随机推荐

  1. 【GIT】下载最新库命令

    使用技巧:使用这个命令 git clone git仓库地址 --depth=1 这样只下载最新版本仓库,而不是所有历史版本的仓库

  2. MIT线性代数:4.A的LU分解

  3. python基础-函数作用域

    函数 函数对象 函数是第一类对象 函数名可以被引用 函数名可以当作参数使用 函数名可以当作返回值使用 函数名可以当作容器类型的元素 函数嵌套 嵌套调用:在函数内部中调用函数 嵌套定义:在函数内部中定义 ...

  4. ctf misc 学习总结大合集

    0x00 ext3 linux挂载光盘,可用7zip解压或者notepad搜flag,base64解码放到kali挂载到/mnt/目录 mount 630a886233764ec2a63f305f31 ...

  5. 【python测试开发栈】python基础语法大盘点

    周边很多同学在用python,但是偶尔会发现有人对python的基础语法还不是特别了解,所以帮大家梳理了python的基础语法(文中的介绍以python3为例).如果你已然是python大牛,可以跳过 ...

  6. PHP 向数组头部插入数据

    PHP 向数组头部插入数据 函数: array_unshift() 示例: $s = array('a' => 0, 'b' => 3); array_unshift($s, '5'); ...

  7. bash:字符串变量查找

    提供了替换文本的查找替换功能,如 sed s/Wintel/Linux/g data (将Wintel替换为Linux)  大命令 下边是基于变量的小命令: 1)查找与替换 ${data/Wintel ...

  8. 开始逆向objc基础准备(一)简单认识一下arm32,以及与x86汇编指令类比

    ARM32体系中有31或33个通用寄存器,没有特定的某种态下有r0-r15一共16个寄存器,快速中断态下有另一组r8-r12备份寄存器,在用户态和系统态之外其它态下都各自有一组r13-r14备份寄存器 ...

  9. ubuntu 16.04安装并启动openssh

    对于没有图形界面的linux系统,一般都会用到远程连接控制,,因此新安装的linux系统,在配好网络后,首先要安装的就是远程连接工具,ssh是常用的方法. ps -ef |grep ssh  //查看 ...

  10. template screen

    从全局搜索主机可看到此screen