前言

项目地址:Regex in Python

开学摸鱼了几个礼拜,最近几天用Python造了一个正则表达式引擎的轮子,在这里记录分享一下。

实现目标

实现了所有基本语法

st = 'AS342abcdefg234aaaaabccccczczxczcasdzxc'
pattern = '([A-Z]+[0-9]*abcdefg)([0-9]*)(\*?|a+)(zx|bc*)([a-z]+|[0-9]*)(asd|fgh)(zxc)' regex = Regex(st, pattern)
result = regex.match()
log(result)

更多示例可以在github上看到

前置知识

其实正则表达式的引擎完全可以看作是一个小型的编译器,所以完全可以按之前写的那个C语言的编译器的思路来,只是没有那么复杂而已

  1. 首先进行词法分析
  2. 语法分析(这里用自顶向下)
  3. 语义分析 (因为正则的表达能力非常弱,所以可以省略生成AST的部分直接进行代码生成)
  4. 代码生成,这里也就是进行NFA的生成
  5. NFA到DFA的转换,这里开始就是正则和状态机的相关的知识了
  6. DFA的最小化

NFA和DFA

有限状态机可以看作是一个有向图,状态机中有若干个节点,每个节点都可以根据输入字符来跳转到下一个节点,而区别NFA((非确定性有限状态自动机)和DFA(确定性有限状态自动机)的是DFA的下一个跳转状态是唯一确定的)

有限状态自动机从开始的初始状态开始读取输入的字符串,自动机使用状态转移函数move根据当前状态和当前的输入字符来判断下一个状态,但是NFA的下一个状态不是唯一确定的,所以只能确定的是下一个状态集合,这个状态集合还需要依赖之后的输入才能确定唯一所处的状态。如果当自动机完成读取的时候,它处于接收状态的话,则说明NFA可以接收这个输入字符串

对于所有的NFA最后都可以转换为对应的DFA

NFA构造O(n),匹配O(nm)

DFA构造O(2^n),最小化O(kn'logn')(N'=O(2^n)),匹配O(m)

n=regex长度,m=串长,k=字母表大小,n'=原始的dfa大小

NFA接受的所有字符串的集合是NFA接受的语言。这个语言是正则语言。

例子

对于正则表达式:[0-9]*[A-Z]+,对应的NFA就是将下面两个NFA的节点3和节点4连接起来



词法分析

对于NFA和DFA其实只要知道这么多和一些相应的算法就已经足够了,相应的算法在后面提及,先完成词法分析的部分,

这个词法分析比之前C语言编译器的语法分析要简单许多,只要处理几种可能性

  1. 普通字符
  2. 含有语义的字符
  3. 转义字符

token

token没什么好说的,就是对应正则里的语法

Tokens = {
'.': Token.ANY,
'^': Token.AT_BOL,
'$': Token.AT_EOL,
']': Token.CCL_END,
'[': Token.CCL_START,
'}': Token.CLOSE_CURLY,
')': Token.CLOSE_PAREN,
'*': Token.CLOSURE,
'-': Token.DASH,
'{': Token.OPEN_CURLY,
'(': Token.OPEN_PAREN,
'?': Token.OPTIONAL,
'|': Token.OR,
'+': Token.PLUS_CLOSE,
}

advance

advance是词法分析里最主要的函数,用来返回当前输入字符的Token类型

def advance(self):
pos = self.pos
pattern = self.pattern
if pos > len(pattern) - 1:
self.current_token = Token.EOS
return Token.EOS text = self.lexeme = pattern[pos]
if text == '\\':
self.isescape = not self.isescape
self.pos = self.pos + 1
self.current_token = self.handle_escape()
else:
self.current_token = self.handle_semantic_l(text) return self.current_token

advance的主要逻辑就是读入当前字符,再来判断是否是转义字符或者是其它字符

handle_escape用来处理转义字符,当然转义字符最后本质上返回的还是普通字符类型,这个函数的主要功能就是来记录当前转义后的字符,然后赋值给lexem,供之后构造自动机使用

handle_semantic_l只有两行,一是查表,这个表保存了所有的拥有语义的字符,如果查不到就直接返回普通字符类型了

完整代码就不放上来了,都在github

构造NFA

构造NFA的主要文件都在nfa包下,nfa.py是NFA节点的定义,construction.py是实现对NFA的构造

NFA节点定义

NFA节点的定义也很简单,其实这个正则表达式引擎完整的实现只有900行左右,每一部分拆开看都非常简单

  • edge和input_set都是用来指示边的,边一共可能有四种种可能的属性

    • 对应的节点有两个出去的ε边

      edge = PSILON = -1
    • 边对应的是字符集

      edge = CCL = -2

      input_set = 相应字符集
    • 一条ε边

      edge = EMPTY = -3
    • 边对应的是单独的一个输入字符c

      edge = c
  • status_num每个节点都有唯一的一个标识

  • visited则是为了debug用来遍历NFA

class Nfa(object):
STATUS_NUM = 0 def __init__(self):
self.edge = EPSILON
self.next_1 = None
self.next_2 = None
self.visited = False
self.input_set = set()
self.set_status_num() def set_status_num(self):
self.status_num = Nfa.STATUS_NUM
Nfa.STATUS_NUM = Nfa.STATUS_NUM + 1 def set_input_set(self):
self.input_set = set()
for i in range(ASCII_COUNT):
self.input_set.add(chr(i))

简单节点的构造

节点的构造在nfa.construction下,这里为了简化代码把Lexer作为全局变量,让所有函数共享

正则表达式的BNF范式如下,这样我们可以采用自顶向下来分析,从最顶层的group开始向下递归

group ::= ("(" expr ")")*
expr ::= factor_conn ("|" factor_conn)*
factor_conn ::= factor | factor factor*
factor ::= (term | term ("*" | "+" | "?"))*
term ::= char | "[" char "-" char "]" | .

BNF在之前写C语言编译器的时候有提到:从零写一个编译器(二)

主入口

这里为了简化代码,就把词法分析器作为全局变量,让所有函数共享

主要逻辑非常简单,就是初始化词法分析器,然后传入NFA头节点开始进行递归创建节点

def pattern(pattern_string):
global lexer
lexer = Lexer(pattern_string)
lexer.advance()
nfa_pair = NfaPair()
group(nfa_pair) return nfa_pair.start_node

term

虽然是采用的是自顶向下的语法分析,但是从自底向上看会更容易理解,term是最底部的构建,也就是像单个字符、字符集、.符号的节点的构建

term ::= char | "[" char "-" char "]" | | .

term的主要逻辑就是根据当前读入的字符来判断应该构建什么节点

def term(pair_out):
if lexer.match(Token.L):
nfa_single_char(pair_out)
elif lexer.match(Token.ANY):
nfa_dot_char(pair_out)
elif lexer.match(Token.CCL_START):
nfa_set_nega_char(pair_out)

三种节点的构造函数都很简单,下面图都是用markdown的mermaid随便画画的

  • nfa_single_char

单个字符的NFA构造就是创建两个节点然后把当前匹配的字符作为edge

def nfa_single_char(pair_out):
if not lexer.match(Token.L):
return False start = pair_out.start_node = Nfa()
pair_out.end_node = pair_out.start_node.next_1 = Nfa()
start.edge = lexer.lexeme
lexer.advance()
return True
  • nfa_dot_char

. 这个的NFA和上面单字符的唯一区别就是它的edge被设置为CCL,并且设置了input_set

# . 匹配任意单个字符
def nfa_dot_char(pair_out):
if not lexer.match(Token.ANY):
return False start = pair_out.start_node = Nfa()
pair_out.end_node = pair_out.start_node.next_1 = Nfa()
start.edge = CCL
start.set_input_set() lexer.advance()
return False
  • nfa_set_nega_char

这个函数逻辑上只比上面的多了一个处理input_set

def nfa_set_nega_char(pair_out):
if not lexer.match(Token.CCL_START):
return False neagtion = False
lexer.advance()
if lexer.match(Token.AT_BOL):
neagtion = True start = pair_out.start_node = Nfa()
start.next_1 = pair_out.end_node = Nfa()
start.edge = CCL
dodash(start.input_set) if neagtion:
char_set_inversion(start.input_set) lexer.advance()
return True

小结

篇幅原因,现在已经写到了三百多行,所以就分篇写,准备在三篇内完成。下一篇写构造更复杂的NFA和通过构造的NFA来分析输入字符串。最后写从NFA转换到DFA,再最后用DFA分析输入的字符串

实现一个正则表达式引擎in Python(一)的更多相关文章

  1. 实现一个正则表达式引擎in Python(二)

    项目地址:Regex in Python 在看一下之前正则的语法的 BNF 范式 group ::= ("(" expr ")")* expr ::= fact ...

  2. 实现一个正则表达式引擎in Python(三)

    项目地址:Regex in Python 前两篇已经完成的写了一个基于NFA的正则表达式引擎了,下面要做的就是更近一步,把NFA转换为DFA,并对DFA最小化 DFA的定义 对于NFA转换为DFA的算 ...

  3. 1000行代码徒手写正则表达式引擎【1】--JAVA中正则表达式的使用

    简介: 本文是系列博客的第一篇,主要讲解和分析正则表达式规则以及JAVA中原生正则表达式引擎的使用.在后续的文章中会涉及基于NFA的正则表达式引擎内部的工作原理,并在此基础上用1000行左右的JAVA ...

  4. Python的regex模块——更强大的正则表达式引擎

    Python自带了正则表达式引擎(内置的re模块),但是不支持一些高级特性,比如下面这几个: 固化分组    Atomic grouping 占有优先量词    Possessive quantifi ...

  5. 基于ε-NFA的正则表达式引擎

    正则表达式几乎每个程序员都会用到,对于这么常见的一个语言,有没有想过怎么去实现一个呢?乍一想,也许觉得困难,实际上实现一个正则表达式的引擎并没有想像中的复杂,<编译原理>一书中有一章专门讲 ...

  6. DEELX 正则表达式引擎(v1.2)

    DEELX 正则表达式引擎(v1.2) 简介见文末. 选择使用deelx的理由:全部代码位于一个头文件(.h)中, 比任何引擎都使用简单和方便. 利用分组从字符串当中提取出化学元素英文名.比如 Ag, ...

  7. 正则表达式学习与python中的应用

    目录: 一.正则表达式的特殊符号 二.几种重要的正则表达式 三.python的re模块应用 四.参考文献 一.正则表达式的特殊符号 特殊符号可以说是正则表达式的关键,掌握并且可以灵活运用重要的pyth ...

  8. 一个简单的多线程Python爬虫(一)

    一个简单的多线程Python爬虫 最近想要抓取拉勾网的数据,最开始是使用Scrapy的,但是遇到了下面两个问题: 前端页面是用JS模板引擎生成的 接口主要是用POST提交参数的 目前不会处理使用JS模 ...

  9. 只有20行Javascript代码!手把手教你写一个页面模板引擎

    http://www.toobug.net/article/how_to_design_front_end_template_engine.html http://barretlee.com/webs ...

随机推荐

  1. spring-cloud-config 配置中心快速上手

    spring-cloud-config 配置中心实现 Spring Cloud Config 用于为分布式系统中的基础设施和微服务应用提供集中化的外部配置支持,分为server端和client端. s ...

  2. springboot 项目的https的发布

    1.生成密钥证书 生成命令: keytool -genkey -alias tomcat -storetype PKCS12 -keyalg RSA -keysize -keystore keysto ...

  3. TomatoLog-1.1.0实现ILoggerFactory

    TomatoLog TomatoLog 是一个基于 .NETCore 平台的产品. The TomatoLog 是一个中间件,包含客户端.服务端,非常容易使用和部署. 客户端实现了ILoggerFac ...

  4. GPU服务器安装NVIDIA驱动以及CUDA

    1.安装系统 系统版本: ubuntu16.04.05 LTS 分区要求: /boot 1024M swap 64G / 剩余空间

  5. bzoj 2001 CITY 城市建设 cdq分治

    题目传送门 题解: 对整个修改的区间进行分治.对于当前修改区间来说,我们对整幅图中将要修改的边权都先改成-inf,跑一遍最小生成树,然后对于一条树边并且他的权值不为-inf,那么这条边一定就是树边了. ...

  6. CodeForces 601B Lipshitz Sequence

    Lipshitz Sequence 题解: 可以通过观察得到,对于任意一个区间来说, 只有相邻的2个点的差值才会是区间的最大值. 具体观察方法,可以用数学分析, 我是通过画图得到的. 那么基于上面的观 ...

  7. CodeM 资格赛 B 可乐 思维

      分析: 我们假设购买一种可乐p瓶,我们可以得到期望:p*(m/n*a[i]+(n-m)/n*b[i]),由这个式子我们可以看出唯一的变量是i,所以可以遍历i找出式子的最大值 #include &l ...

  8. codeforces 798 C. Mike and gcd problem(贪心+思维+数论)

    题目链接:http://codeforces.com/contest/798/problem/C 题意:给出一串数字,问如果这串数字的gcd大于1,如果不是那么有这样的操作,删除ai, ai + 1 ...

  9. JAVA - 一个for循环实现99乘法表

    public class Test03 {public static void main(String[] args) { int lie = 1; for (int hang = 1; hang&l ...

  10. Shiro实现用户对动态资源细粒度的权限校验

    前言 在实际系统应用中,普遍存在这样的一种业务场景,需要实现用户对要访问的资源进行动态权限校验. 譬如,在某平台的商家系统中,存在商家.品牌.商品等业务资源.它们之间的关系为:一个商家可以拥有多个品牌 ...