Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) F2. Wrong Answer on test 233 (Hard Version) dp 数学
F2. Wrong Answer on test 233 (Hard Version)
Your program fails again. This time it gets "Wrong answer on test 233"
.
This is the harder version of the problem. In this version, 1≤n≤2⋅105. You can hack this problem if you locked it. But you can hack the previous problem only if you locked both problems.
The problem is to finish n one-choice-questions. Each of the questions contains k options, and only one of them is correct. The answer to the i-th question is hi, and if your answer of the question i is hi, you earn 1 point, otherwise, you earn 0 points for this question. The values h1,h2,…,hn are known to you in this problem.
However, you have a mistake in your program. It moves the answer clockwise! Consider all the n answers are written in a circle. Due to the mistake in your program, they are shifted by one cyclically.
Formally, the mistake moves the answer for the question i to the question imodn+1. So it moves the answer for the question 1 to question 2, the answer for the question 2 to the question 3, ..., the answer for the question n to the question 1.
We call all the n answers together an answer suit. There are kn possible answer suits in total.
You're wondering, how many answer suits satisfy the following condition: after moving clockwise by 1, the total number of points of the new answer suit is strictly larger than the number of points of the old one. You need to find the answer modulo 998244353.
For example, if n=5, and your answer suit is a=[1,2,3,4,5], it will submitted as a′=[5,1,2,3,4] because of a mistake. If the correct answer suit is h=[5,2,2,3,4], the answer suit a earns 1 point and the answer suite a′ earns 4 points. Since 4>1, the answer suit a=[1,2,3,4,5] should be counted.
Input
The first line contains two integers n, k (1≤n≤2⋅105, 1≤k≤109) — the number of questions and the number of possible answers to each question.
The following line contains n integers h1,h2,…,hn, (1≤hi≤k) — answers to the questions.
Output
Output one integer: the number of answers suits satisfying the given condition, modulo 998244353.
Examples
input
3 3
1 3 1
output
9
input
5 5
1 1 4 2 2
output
1000
input
6 2
1 1 2 2 1 1
output
16
Note
For the first example, valid answer suits are [2,1,1],[2,1,2],[2,1,3],[3,1,1],[3,1,2],[3,1,3],[3,2,1],[3,2,2],[3,2,3].
题意
现在有n道题,每道题有k个答案,但是你现在犯傻了,把第一题的答案交到了第二题,第二题交到了第3题,第k题交到了第(k%n)+1题的位置上去。
现在想知道,有多少种填答案的方案,可以使得交换后的正确数量多于交换前的正确数量。
题解
数据范围小的话,dp[i][j]表示现在考虑到了第i题,交换后比交换前多得j分。
那么如果h[i]==h[i+1]的话,dp[i][j]=dp[i-1][j],因为无论如何填什么正确得个数都不会变。
其他情况 dp[i][j] = dp[i-1][j+1]+dp[i-1][j-1]+(k-2)dp[i-1][j],有一种情况是之前对了,转换后错了;之前错了,转换后对了;其他k-2种答案都保持不变。
hard version我们要反着做,假设我们知道最后转换后和转换前分数一样得方案数为ans的话,那么k^n-ans表示的是转换后得分发生改变的方案数。
又因为转换前分数高和转换后分数高的方案数是一样的,因为对称,所以最后答案一定是 (k^n-ans)/2
那么这个ans怎么做呢,假设现在h[i]!=h[i+1]的个数为num个,因为相同的话没有意义,因为填什么都无所谓
我们枚举+1的位置有多少个,C(num,i);同样的-1也得i个C(num-i,i),其他num-2i个位置有k-2种选择(k-2)(num-2i),剩下n-num个位置都有k个选择k(n-num)。
那么i个+1位置的方案数其实就是C(num,i)C(num-i,i)(k-2)(num-2i)k(n-num),最后用所有的方案数减去他再除以2就完事。
代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 2005;
const int mod = 998244353;
int h[maxn];
long long dp[maxn][maxn*2],base=2003,k,n;
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
scanf("%d",&h[i]);
if(k==1){
cout<<"0"<<endl;
return 0;
}
dp[0][base]=1;
for(int i=1;i<=n;i++){
for(int j=base-2000;j<=base+2000;j++){
if(h[i]==h[i%n+1]){
dp[i][j]=dp[i-1][j]*k%mod;
}else{
dp[i][j]=(dp[i-1][j+1]+dp[i-1][j-1]+dp[i-1][j]*(k-2))%mod;
}
}
}
long long ans = 0;
for(int i=1;i<=n;i++){
ans=(ans+dp[n][base+i])%mod;
}
cout<<ans<<endl;
}
#include<bits/stdc++.h>
using namespace std;
const long long mod = 998244353;
const int maxn = 2e5+7;
int n,k,h[maxn];
long long powmod(long long a,long long b){
if(b==0)return 1;
return b%2==0?powmod(a*a%mod,b/2):powmod(a*a%mod,b/2)*a%mod;
}
long long fac[maxn],inv[maxn];
long long C(int a,int b){
if(b<0||b>n)return 0;
return (fac[a]*inv[b]%mod)*inv[a-b]%mod;
}
int main(){
fac[0]=inv[0]=1;
for(int i=1;i<maxn;i++){
fac[i]=i*fac[i-1]%mod;
inv[i]=powmod(i,mod-2)*inv[i-1]%mod;
}
cin>>n>>k;
if(k==1){
cout<<"0"<<endl;
return 0;
}
for(int i=0;i<n;i++)
cin>>h[i];
int num = 0;
h[n]=h[0];
for(int i=0;i<n;i++){
if(h[i]!=h[i+1])num++;
}
long long ans = 0;
for(int i=0;i*2<=num;i++){
long long tmp = C(num,i)*C(num-i,i)%mod*powmod(k-2,num-2*i)%mod*powmod(k,n-num);
ans=(ans+tmp)%mod;
}
cout<<((powmod(k,n)-ans+mod)*inv[2])%mod<<endl;
}
Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) F2. Wrong Answer on test 233 (Hard Version) dp 数学的更多相关文章
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3
A,有多个线段,求一条最短的线段长度,能过覆盖到所又线段,例如(2,4)和(5,6) 那么我们需要4 5连起来,长度为1,例如(2,10)(3,11),用(3,10) 思路:我们想一下如果题目说的是最 ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) E. Arson In Berland Forest 二分 前缀和
E. Arson In Berland Forest The Berland Forest can be represented as an infinite cell plane. Every ce ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) D2. Optimal Subsequences (Hard Version) 数据结构 贪心
D2. Optimal Subsequences (Hard Version) This is the harder version of the problem. In this version, ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) C. Messy 构造
C. Messy You are fed up with your messy room, so you decided to clean it up. Your room is a bracket ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) B. Box 贪心
B. Box Permutation p is a sequence of integers p=[p1,p2,-,pn], consisting of n distinct (unique) pos ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) A. Math Problem 水题
A. Math Problem Your math teacher gave you the following problem: There are n segments on the x-axis ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) C Messy
//因为可以反转n次 所以可以得到任何可以构成的序列 #include<iostream> #include<string> #include<vector> us ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) B Box
#include<bits/stdc++.h> using namespace std; ]; ]; int main() { int total; cin>>total; w ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) A Math Problem
//只要从所有区间右端点的最小值覆盖到所有区间左端点的最大值即可 #include<iostream> using namespace std ; int x,y; int n; int ...
随机推荐
- ionic项目使用Google FCM插件和Google maps插件打包android报错冲突问题
这段时间在调FCM推送服务的插件 ,原本以为去年调通过,应该很容易,没想到还是出问题了.现将问题及解决方法整理如下,仅供参考: 先看打包报错截图: 详细报错信息:Please fix ...
- grep的使用及正则表达式
1.常用选项: -E :开启扩展(Extend)的正则表达式. -i :忽略大小写(ignore case). -v :反过来(invert),只打印没有匹配的,而匹配的反而不打印. -n :显示行号 ...
- 阿里云ECS服务器部署HADOOP集群(七):Sqoop 安装
本篇将在 阿里云ECS服务器部署HADOOP集群(一):Hadoop完全分布式集群环境搭建 阿里云ECS服务器部署HADOOP集群(二):HBase完全分布式集群搭建(使用外置ZooKeeper) 阿 ...
- MySQL数据库:合并结果集
合并结果集 union----合并结果集 对合并后的结果集中的重复数据也会自动去重 select sName from students union select tName from Teacher ...
- Linux禁用root用户
在创建各种云主机的时候,云服务商给的都是root用户,这很方便,但是有某些时候会造成一些困扰,日后在服务器上启动各种服务后,仅仅拥有root权限的用户才能访问更改这些服务,这样会造成一些不必要的困扰, ...
- 通过pywin32库来上传文件
先来安装:pip install pywin32 辅助定位工具winspy下载地址:https://sourceforge.net/projects/winspyex/ 打开后是这玩意: 按住靶心拖拽 ...
- Web安全测试学习笔记-DVWA-SQL注入-2
接上一篇SQL注入的学习笔记,上一篇我通过报错信息得知后台数据库是MySQL(这个信息非常重要~),然后通过SQL注入拿到了用户表的所有行,其实我们还可以通过MySQL的特性来拿更多的信息. 1. 获 ...
- ETCD:TLS
原文地址:TLS etcd支持用于客户端到服务器以及对等方(服务器到服务器/集群)通信的自动TLS以及通过客户端证书的身份验证. 要启动并运行,首先要获得一个成员的CA证书和签名密钥对. 建议为集群中 ...
- C#_服务器EXCEL模板文件导出
A-1:EXCEL模板导出 非常简单,将EXCEL模板上传到项目中后,将其浏览URL保存下来(excelUrl),然后: window.location.href="http://local ...
- PlayJava Day012
今日所学: /* 2019.08.19开始学习,此为补档. */ JPanel和JFrame 1.JFrame是最底层,JPanel是置于其面上,同一个界面只有一个JFrame,一个JFrame可以放 ...