Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) F2. Wrong Answer on test 233 (Hard Version) dp 数学
F2. Wrong Answer on test 233 (Hard Version)
Your program fails again. This time it gets "Wrong answer on test 233"
.
This is the harder version of the problem. In this version, 1≤n≤2⋅105. You can hack this problem if you locked it. But you can hack the previous problem only if you locked both problems.
The problem is to finish n one-choice-questions. Each of the questions contains k options, and only one of them is correct. The answer to the i-th question is hi, and if your answer of the question i is hi, you earn 1 point, otherwise, you earn 0 points for this question. The values h1,h2,…,hn are known to you in this problem.
However, you have a mistake in your program. It moves the answer clockwise! Consider all the n answers are written in a circle. Due to the mistake in your program, they are shifted by one cyclically.
Formally, the mistake moves the answer for the question i to the question imodn+1. So it moves the answer for the question 1 to question 2, the answer for the question 2 to the question 3, ..., the answer for the question n to the question 1.
We call all the n answers together an answer suit. There are kn possible answer suits in total.
You're wondering, how many answer suits satisfy the following condition: after moving clockwise by 1, the total number of points of the new answer suit is strictly larger than the number of points of the old one. You need to find the answer modulo 998244353.
For example, if n=5, and your answer suit is a=[1,2,3,4,5], it will submitted as a′=[5,1,2,3,4] because of a mistake. If the correct answer suit is h=[5,2,2,3,4], the answer suit a earns 1 point and the answer suite a′ earns 4 points. Since 4>1, the answer suit a=[1,2,3,4,5] should be counted.
Input
The first line contains two integers n, k (1≤n≤2⋅105, 1≤k≤109) — the number of questions and the number of possible answers to each question.
The following line contains n integers h1,h2,…,hn, (1≤hi≤k) — answers to the questions.
Output
Output one integer: the number of answers suits satisfying the given condition, modulo 998244353.
Examples
input
3 3
1 3 1
output
9
input
5 5
1 1 4 2 2
output
1000
input
6 2
1 1 2 2 1 1
output
16
Note
For the first example, valid answer suits are [2,1,1],[2,1,2],[2,1,3],[3,1,1],[3,1,2],[3,1,3],[3,2,1],[3,2,2],[3,2,3].
题意
现在有n道题,每道题有k个答案,但是你现在犯傻了,把第一题的答案交到了第二题,第二题交到了第3题,第k题交到了第(k%n)+1题的位置上去。
现在想知道,有多少种填答案的方案,可以使得交换后的正确数量多于交换前的正确数量。
题解
数据范围小的话,dp[i][j]表示现在考虑到了第i题,交换后比交换前多得j分。
那么如果h[i]==h[i+1]的话,dp[i][j]=dp[i-1][j],因为无论如何填什么正确得个数都不会变。
其他情况 dp[i][j] = dp[i-1][j+1]+dp[i-1][j-1]+(k-2)dp[i-1][j],有一种情况是之前对了,转换后错了;之前错了,转换后对了;其他k-2种答案都保持不变。
hard version我们要反着做,假设我们知道最后转换后和转换前分数一样得方案数为ans的话,那么k^n-ans表示的是转换后得分发生改变的方案数。
又因为转换前分数高和转换后分数高的方案数是一样的,因为对称,所以最后答案一定是 (k^n-ans)/2
那么这个ans怎么做呢,假设现在h[i]!=h[i+1]的个数为num个,因为相同的话没有意义,因为填什么都无所谓
我们枚举+1的位置有多少个,C(num,i);同样的-1也得i个C(num-i,i),其他num-2i个位置有k-2种选择(k-2)(num-2i),剩下n-num个位置都有k个选择k(n-num)。
那么i个+1位置的方案数其实就是C(num,i)C(num-i,i)(k-2)(num-2i)k(n-num),最后用所有的方案数减去他再除以2就完事。
代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 2005;
const int mod = 998244353;
int h[maxn];
long long dp[maxn][maxn*2],base=2003,k,n;
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
scanf("%d",&h[i]);
if(k==1){
cout<<"0"<<endl;
return 0;
}
dp[0][base]=1;
for(int i=1;i<=n;i++){
for(int j=base-2000;j<=base+2000;j++){
if(h[i]==h[i%n+1]){
dp[i][j]=dp[i-1][j]*k%mod;
}else{
dp[i][j]=(dp[i-1][j+1]+dp[i-1][j-1]+dp[i-1][j]*(k-2))%mod;
}
}
}
long long ans = 0;
for(int i=1;i<=n;i++){
ans=(ans+dp[n][base+i])%mod;
}
cout<<ans<<endl;
}
#include<bits/stdc++.h>
using namespace std;
const long long mod = 998244353;
const int maxn = 2e5+7;
int n,k,h[maxn];
long long powmod(long long a,long long b){
if(b==0)return 1;
return b%2==0?powmod(a*a%mod,b/2):powmod(a*a%mod,b/2)*a%mod;
}
long long fac[maxn],inv[maxn];
long long C(int a,int b){
if(b<0||b>n)return 0;
return (fac[a]*inv[b]%mod)*inv[a-b]%mod;
}
int main(){
fac[0]=inv[0]=1;
for(int i=1;i<maxn;i++){
fac[i]=i*fac[i-1]%mod;
inv[i]=powmod(i,mod-2)*inv[i-1]%mod;
}
cin>>n>>k;
if(k==1){
cout<<"0"<<endl;
return 0;
}
for(int i=0;i<n;i++)
cin>>h[i];
int num = 0;
h[n]=h[0];
for(int i=0;i<n;i++){
if(h[i]!=h[i+1])num++;
}
long long ans = 0;
for(int i=0;i*2<=num;i++){
long long tmp = C(num,i)*C(num-i,i)%mod*powmod(k-2,num-2*i)%mod*powmod(k,n-num);
ans=(ans+tmp)%mod;
}
cout<<((powmod(k,n)-ans+mod)*inv[2])%mod<<endl;
}
Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) F2. Wrong Answer on test 233 (Hard Version) dp 数学的更多相关文章
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3
A,有多个线段,求一条最短的线段长度,能过覆盖到所又线段,例如(2,4)和(5,6) 那么我们需要4 5连起来,长度为1,例如(2,10)(3,11),用(3,10) 思路:我们想一下如果题目说的是最 ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) E. Arson In Berland Forest 二分 前缀和
E. Arson In Berland Forest The Berland Forest can be represented as an infinite cell plane. Every ce ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) D2. Optimal Subsequences (Hard Version) 数据结构 贪心
D2. Optimal Subsequences (Hard Version) This is the harder version of the problem. In this version, ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) C. Messy 构造
C. Messy You are fed up with your messy room, so you decided to clean it up. Your room is a bracket ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) B. Box 贪心
B. Box Permutation p is a sequence of integers p=[p1,p2,-,pn], consisting of n distinct (unique) pos ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) A. Math Problem 水题
A. Math Problem Your math teacher gave you the following problem: There are n segments on the x-axis ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) C Messy
//因为可以反转n次 所以可以得到任何可以构成的序列 #include<iostream> #include<string> #include<vector> us ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) B Box
#include<bits/stdc++.h> using namespace std; ]; ]; int main() { int total; cin>>total; w ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) A Math Problem
//只要从所有区间右端点的最小值覆盖到所有区间左端点的最大值即可 #include<iostream> using namespace std ; int x,y; int n; int ...
随机推荐
- 腾讯云大学 x CODING | 当 DevOps 邂逅云原生
2019 年经济减速的阴云笼罩了所有行业,势如破竹的发展势头被打破,小微创新型企业生存艰难.越来越多的企业更加关注客户和业务之间的交付价值,精益化公司运营,降低成本,驱动业务发展.是否要拥抱云原生?开 ...
- docker升级步骤及注意事项
centos系统默认安装的docker版本是1.13版本,在安装部分镜像时可能出现兼容问题,本文通过实际操作总结Docker升级最新版本步骤及可能出现的问题,供各位参考. 环境:CentOS Linu ...
- GTID复制的工作原理
参考自:https://dev.mysql.com/doc/refman/5.7/en/replication-gtids-lifecycle.html 笔记说明: 本文翻译自官网,当然会根据语义做一 ...
- 并发编程~~~多线程~~~线程queue, 事件event,
一 线程queue 多线程抢占资源,只能让其串行. 互斥锁 队列 import queue q = queue.Queue() # 先进先出 q = queue.LifoQueue() # 先进后出 ...
- quarter软件的破解
链接;http://www.openedv.com/forum.php?mod=viewthread&tid=275857&extra=page%3D1 这个是正点原子提供的破解方法, ...
- Java之DateFormat类
DateFormat类概述 java.text.DateFormat 是日期/时间格式化子类的抽象类,我们通过这个类可以帮我们完成日期和文本之间的转换,也就是可以在Date对象与String对象之间进 ...
- CNN卷积核
一.卷积操作有两个问题: 1. 图像越来越小: 2. 图像边界信息丢失,即有些图像角落和边界的信息发挥作用较少.因此需要padding. 二.卷积核大小通常为奇数 1.一方面是为了方便same卷积pa ...
- Linux习题小结
1.输出当前下的目录.ls -l 长格式输出. (1)使用grep 因为第一个 ls -l 的第一个标识代表的是文件类型,所以使用 grep 过滤以 d 开头的行,输出的就只是目录了. 正则表达式 g ...
- JAVA集合框架(一)-综述
目录 什么是java集合框架 使用类型安全的容器 集合框架简图 集合类库主要接口简述 Collection接口方法概览 什么是java集合框架 其实就是java类库提供的一套相当完整的各种数据结构的实 ...
- IDEA提示找不到Mapper接口:Could not autowire.No beans of 'xxxMapper' type found
前言 相信大多数互联网公司的持久层框架都是使用 Mybatis 框架,而大家在 Service 层引入自己编写的 Mapper 接口时应该会遇到下面的情况: 我们可以看到,上面的红色警告在提示我们,找 ...