3316: JC loves Mkk

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 979  Solved: 316
[Submit][Status][Discuss]

Description

Input

第1行,包含三个整数。n,L,R。
第2行n个数,代表a[1..n]。

Output

仅1行,表示询问答案。
如果答案是整数,就输出整数;否则,输出既约分数“P/Q”来表示。

Sample Input

5 3 4
3 1 2 4 5

Sample Output

7/2

HINT
1≤L≤R≤n≤10^5,0≤ai≤10^9,保证问题有解,数据随机生成

  这道题其实挺有意思的,既约分数这一点恐怕卡住了无数想打二分的像我一样的蒟蒻,然而,如果我们观察到问题的本质我们就可以抛开既约分数对于二分答案的限制。
  所以,为了方便,我们先假设这道题只是让我们输出小数,那么假设我们二分出来的答案是x,l为我们选择的左边界则:
    sum[i]-sum[l-1]/(i-l+1)>=x   (L<=i-l+1<=R (i-l+1)%2==0)
  将式子化简可得sum[i]-i*x>=sum[l-1]-(l-1)*x那么每一个点所提供的信息在二分答案确定后也就可以确定了。值得注意的是由于题目偶数的限制,我们需要准备两个单调队列去满足这一条件,利用滚动数组即可,同时,我们也应注意到,我们实际要求的是sum[l-1]-(l-1)*x最小,对于l自己本身并无要求,所以我们单调队列存的实际是l-1的信息。
  现在,除了既分约数基本这道题解决完了。我们可以注意到,对于每次check二分的值成功时他所对应的答案一定是递增的,所以我们完全可以抛开我们二分的值,直接现求当前答案,这样就可以很好的解决既分约数对于二分答案的限制了。
  

 #pragma GCC optimze("O3")
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#include<cmath>
#include<map>
#include<vector>
#define N 100005
using namespace std;
int n,L,R;
long long a[*N],sum[N*],mx;
int q[][N*];
int hea[],en[];
long long ansa,ansb;
long long gcd(long long x,long long y)
{
if(y==)return x;
return gcd(y,x%y);
}
bool check(double x)
{
memset(q,,sizeof(q));
hea[]=hea[]=,en[]=en[]=;
int now=,la=;
for(int i=L;i<*n;i++)
{
swap(now,la);
while(hea[now]<=en[now]&&sum[q[now][en[now]]]-(double)(q[now][en[now]])*x>sum[i-L]-(double)(i-L)*x) en[now]--;
en[now]++;
q[now][en[now]]=i-L;
if(i>R)
while(hea[now]<=en[now]&&q[now][en[now]]<i-R)hea[now]++;
if(sum[i]-sum[q[now][hea[now]]]>=(double)(i)*x-(double)(q[now][hea[now]])*x)
{
ansa=sum[i]-sum[q[now][hea[now]]];
ansb=i-q[now][hea[now]];
long long t=gcd(ansa,ansb);
ansa/=t;
ansb/=t;
return ;
}
}
return ;
}
int main()
{
scanf("%d%d%d",&n,&L,&R);
if(L%)L++; if(R%)R--;
for(int i=;i<=n;i++)
{
scanf("%lld",&a[i]);
a[i+n]=a[i];
mx=max(mx,a[i]);
}
for(int i=;i<n*;i++)
sum[i]+=sum[i-]+a[i];
double li=,ri=mx;
while(ri-li>1e-)
{
double mid=(li+ri)/;
if(check(mid)) li=mid;
else ri=mid;
}
if(ansb!=)
printf("%lld/%lld\n",ansa,ansb);
else
printf("%lld\n",ansa);
return ;
}

bzoj3316 JC loves Mkk题解的更多相关文章

  1. bzoj3316: JC loves Mkk

    Description Input 第1行,包含三个整数.n,L,R.第2行n个数,代表a[1..n]. Output 仅1行,表示询问答案.如果答案是整数,就输出整数:否则,输出既约分数“P/Q”来 ...

  2. bzoj3316: JC loves Mkk(单调队列+分数规划)

    Description Input 第1行,包含三个整数.n,L,R.第2行n个数,代表a[1..n]. Output 仅1行,表示询问答案.如果答案是整数,就输出整数:否则,输出既约分数“P/Q”来 ...

  3. 【BZOJ3316】JC loves Mkk 分数规划+单调队列

    [BZOJ3316]JC loves Mkk Description Input 第1行,包含三个整数.n,L,R.第2行n个数,代表a[1..n]. Output 仅1行,表示询问答案.如果答案是整 ...

  4. 【BZOJ 3316】JC loves Mkk 01分数规划+单调队列

    单调栈不断吞入数据维护最值,数据具有单调性但不保证位置为其排名,同时可以按照进入顺序找出临近较值单调队列队列两端均可删除数据但只有队末可以加入数据,仍然不断吞入数据但同时可以额外刨除一些不符合条件的数 ...

  5. CF447B DZY Loves Strings 题解

    Content 有一个长度为 \(n\) 的仅含小写字母的字符串 \(s\) 以及 26 个英文小写字母的价值 \(W_\texttt{a},W_\texttt{b},...,W_\texttt{z} ...

  6. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  7. CF444E. DZY Loves Planting

    题目链接 CF444E. DZY Loves Planting 题解 可以..二分网络流 可是 考虑边从小到大排序 考虑每条边能否成为答案 用并查集维护节点之间的联通性 对于一条边来说,如果这条边可以 ...

  8. DZY Loves Math 系列详细题解

    BZOJ 3309: DZY Loves Math I 题意 \(f(n)\) 为 \(n\) 幂指数的最大值. \[ \sum_{i = 1}^{a} \sum_{j = 1}^{b} f(\gcd ...

  9. 【题解】DZY Loves Chinese

    [题解]DZY Loves Chinese II 不吐槽这题面了... 考虑如何维护图的连通性,如果把图的变成一颗的\(dfs\)生成树,那么如果把一个节点的父边和他接下来所有的返祖边删除,那么我们就 ...

随机推荐

  1. Github上的watch、star和fork分别是什么意思

    Github上的watch.star和fork分别是什么意思呢? 1.watch可以用来设置接收邮件提醒 2.如果想持续关注该项目就star一下 3.如果想将项目拷贝一份到自己的账号下就fork fo ...

  2. 【全面解禁!真正的Expression Blend实战开发技巧】第八章 FluidMoveBehavior完全解析之一漂浮移动

    原文:[全面解禁!真正的Expression Blend实战开发技巧]第八章 FluidMoveBehavior完全解析之一漂浮移动 好久没更新博客了,今天如果没急事,准备连发三篇,完全讲解Blend ...

  3. 如何将svg转换为xaml

    原文:如何将svg转换为xaml 1 下载Inkscape 2 用Inkscape打开svg,另存为xaml 注意:复杂的svg图转换完会出现类似下面的xaml,wpf/silverlight是无法解 ...

  4. iOS UITableView动态隐藏或显示Item

    通过改变要隐藏的item的高度实现隐藏和显示item 1.创建UITableView #import "ViewController.h" @interface ViewContr ...

  5. Android零基础入门第21节:ToggleButton和Switch使用大全

    原文:Android零基础入门第21节:ToggleButton和Switch使用大全 上期学习了CheckBox和RadioButton,那么本期来学习Button的另外两个子控件ToggleBut ...

  6. cairo 图形库

    简介 提到cairo,估计很少知道这还是一个图形库的名字(http://cairographics.org),Linux的两大流行桌面环境KDE和Gnome,其对应的基础组件是QT和GTK+,相对于框 ...

  7. delphi 获取当前进程的cpu占用率

    type  TProcessCpuUsage = record  private    FLastUsed, FLastTime: Int64;    FCpuCount:Integer;  publ ...

  8. vim文本编辑器的基本使用方法

    前言 命令模式与编辑模式 内置命令 参考资料注明 前言 vi命令是UNIX操作系统和类UNIX操作系统中最通用的全屏幕纯文本编辑器.Linux中的vi编辑器叫vim,它是vi的增强版(vi Impro ...

  9. qt---cdb(Microsoft Console Debugger)调试

    支持的调试器 windows系统下主要的调试器: CDB ,只能调试用户程序,只有控制台界面,以命令行形式工作 NTSD, 只能调试用户程序,只有控制台界面,以命令行形式工作 KD,主要用于内核调试, ...

  10. 常用Linux网络命令

    TCP状态统计: netstat -anp TCP各个状态的连接数:netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a] ...