题目传送门

题意:现在有一棵树,每条边的长度都为1,然后有一个权值,求存在多少个(u,v)点对,他们的路劲长度 <= l, 总权重 <= w.

题解:

1.找到树的重心。

2.求出每个点到中心的长度和权值。

3.对所有点都询问出合法点的个数(包括同一颗子树)加到答案上。

4.对于每一棵子树内部都找到合法点的个数从答案中减去。

5.递归处理每一颗子树。

我们现在最大的问题就是怎么计算合法点的个数。

我们把点的信息记录下来之后,按照权重从小到达排序。

然后我们就可以用2个端点维护出 a[l].weight + a[r].weight <= d

这样对于l来说, [l+1,r]里面的所有点都满足权重的条件了。

然后就只需要询问 [l+1,r]里面的点的深度 <= l - deep[i]的个数了,对于这个个数我们用树状数组去维护这个信息,一开始我们把所有的点的深度都加到树状数组里面,然后每次端点移动位置的时候都把当前点的深度从树状数组中移除,这样我们维护出了一颗[ l+1 , r] 里面的点的深度信息了。

代码:

 #include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL mod = (int)1e9+;
const int N = 5e5 + ;
int n, len, w;
int tree[N];
int root, sz[N], mxr;
int vis[N];
int head[N], to[N*], nt[N*], ct[N*];
void add(int x, int v){
for(int i = x; i <= n && i; i += i & (-i))
tree[i] += v;
}
int query(int x){
int ret = ;
for(int i = x; i; i -= i&(-i))
ret += tree[i];
return ret;
}
void getW(int o, int u, int num){
sz[u] = ;
int mx = ;
for(int i = head[u]; ~i; i = nt[i]){
int v = to[i];
if(vis[v] || v == o) continue;
getW(u, v, num);
sz[u] += sz[v];
mx = max(mx, sz[v]);
}
if(o) mx = max(mx, num-sz[u]);
if(mx < mxr) mxr = mx, root = u;
}
//pll p[N];
struct Node {
int fi, se;
bool operator < (const Node & x) const {
if(fi == x.fi) return se < x.se;
return fi < x.fi;
}
}p[N];
LL cal(int l, int r){
if(l >= r) return ;
sort(p+l, p+r+);
LL ans = ;
for(int i = l; i <= r; i++) add(p[i].se, );
for(int L = l, R = r; L <= R; L++){
while(L < R && p[L].fi + p[R].fi > w) {
add(p[R].se, -);
R--;
}
add(p[L].se, -);
if(L >= R) break;
ans += query(max(, len-p[L].se));
}
return ans;
} int sum = ;
void Dfs(int o, int u, int deep, int w){
sz[u] = ;
++sum;
p[sum].fi = w;
p[sum].se = deep;
for(int i = head[u]; ~i; i = nt[i]){
int v = to[i];
if(v == o || vis[v]) continue;
Dfs(u, v, deep+, w+ct[i]);
sz[u] += sz[v];
}
}
LL ans = ;
void GG(int id, int num){
if(num == ){
return ;
}
mxr = inf;
getW(, id, num);
vis[root] = ;
int ls = ; sum = ;
for(int i = head[root]; ~i; i = nt[i]){
int v = to[i];
if(vis[v]) continue;
Dfs(, to[i], , ct[i]);
ans -= cal(ls, sum);
ls = sum + ;
}
sum++;
p[sum].fi = p[sum].se = ;
ans += cal(, sum);
//cout << query(n) << endl;
for(int i = head[root]; ~i; i = nt[i]){
int v = to[i];
if(vis[v]) continue;
GG(v, sz[v]);
}
}
int tot = ;
void add(int u, int v, int w){
to[tot] = v;
ct[tot] = w;
nt[tot] = head[u];
head[u] = tot++;
}
int main(){
memset(head, -, sizeof(head));
scanf("%d%d%d", &n, &len, &w);
int u, v, val;
for(int i = ; i <= n; i++){
u = i;
scanf("%d%d", &v, &val);
add(u, v, val);
add(v, u, val);
}
GG(, n);
printf("%I64d\n", ans);
return ;
}

CodeForces 293E Close Vertices 点分治的更多相关文章

  1. codeforces 293E Close Vertices

    题目链接 正解:点分治+树状数组. 点分治板子题,直接点分以后按照$w$排序,扫指针的时候把$w$合法的路径以$l$为下标加入树状数组统计就行了. 写这道题只是想看看我要写多久..事实证明我确实是老年 ...

  2. CF 293E Close Vertices——点分治

    题目:http://codeforces.com/contest/293/problem/E 仍旧是点分治.用容斥,w的限制用排序+两个指针解决, l 的限制就用树状数组.有0的话就都+1,相对大小不 ...

  3. Codeforces 293E 点分治+cdq

    Codeforces 293E 传送门:https://codeforces.com/contest/293/problem/E 题意: 给你一颗边权一开始为0的树,然后给你n-1次操作,每次给边加上 ...

  4. ●CodeForce 293E Close Vertices

    题链: http://codeforces.com/contest/293/problem/E题解: 点分治,树状数组 大致思路和 POJ 1741 那道点分治入门题相同, 只是因为多了一个路径的边数 ...

  5. Codeforces 833D Red-Black Cobweb [点分治]

    洛谷 Codeforces 思路 看到树上路径的统计,容易想到点分治. 虽然只有一个限制,但这个限制比较麻烦,我们把它拆成两个. 设黑边有\(a\)条,白边有\(b\)条,那么有 \[ 2a\geq ...

  6. Codeforces 1045G AI robots [CDQ分治]

    洛谷 Codeforces 简单的CDQ分治题. 由于对话要求互相看见,无法简单地用树套树切掉,考虑CDQ分治. 按视野从大到小排序,这样只要右边能看见左边就可以保证互相看见. 发现\(K\)固定,那 ...

  7. Codeforces 848C Goodbye Souvenir [CDQ分治,二维数点]

    洛谷 Codeforces 这题我写了四种做法-- 思路 不管做法怎样,思路都是一样的. 好吧,其实不一样,有细微的差别. 第一种 考虑位置\(x\)对区间\([l,r]\)有\(\pm x\)的贡献 ...

  8. Codeforces 938G Shortest Path Queries [分治,线性基,并查集]

    洛谷 Codeforces 分治的题目,或者说分治的思想,是非常灵活多变的. 所以对我这种智商低的选手特别不友好 脑子不好使怎么办?多做题吧-- 前置知识 线性基是你必须会的,不然这题不可做. 推荐再 ...

  9. Codeforces 526F Pudding Monsters - CDQ分治 - 桶排序

    In this problem you will meet the simplified model of game Pudding Monsters. An important process in ...

随机推荐

  1. 2019.7 佳木斯培训A层

    day1题目及题解 day2题目及题解 day3题目及题解 day4题目及题解 day5题目及题解

  2. git删除分支步骤

    在本地删除一个分支: git branch -D <本地分支> 在github远程端删除一个分支: git push origin :<远程端分支> 唯一不同的就是冒号代表了删 ...

  3. linux字符设备驱动中内核如何调用驱动入口函数 一点记录

    /* 内核如何调用驱动入口函数 ? *//* 答: 使用module_init()函数,module_init()函数定义一个结构体,这个结构体里面有一个函数指针,指向first_drv_init() ...

  4. 浅谈 ASCII、Unicode、UTF-8,一目了然

    对于ASCII.Unicode.UTF-8这三种编码方式我们经常用到,也经常挂到嘴边,但他们是怎么来的,为什么要存在,具体是怎么个规则,我们并没有做深入了解,下面,就带你看一下他们到底是怎么回事吧…… ...

  5. kubeproxy源码分析

    kubernetes离线安装包,仅需三步 kube-proxy源码解析 ipvs相对于iptables模式具备较高的性能与稳定性, 本文讲以此模式的源码解析为主,如果想去了解iptables模式的原理 ...

  6. 9、数组中删除元素(test6.java)

    前文讲到,通过函数,进行数组元素的添加,这里同样通过这个函数,进行数组的删除. 举个例子,代码如下: //导入输入所需要的包 import java.util.Scanner; public clas ...

  7. java并发编程(二十一)----(JUC集合)CopyOnWriteArraySet和ConcurrentSkipListSet介绍

    这一节我们来接着介绍JUC集合:CopyOnWriteArraySet和ConcurrentSkipListSet.从名字上来看我们知道CopyOnWriteArraySet与上一节讲到的CopyOn ...

  8. Spring 集成Kafka(完整版)

    前面的文章我们已经完成了Kafka基于Zookeeper的集群的搭建了.Kafka集群搭建请点我.记过几天的研究已经实现Spring的集成了.本文重点 jar包准备 集成是基于spring-integ ...

  9. Flutter学习笔记(17)--顶部导航TabBar、TabBarView、DefaultTabController

    如需转载,请注明出处:Flutter学习笔记(17)--顶部导航TabBar.TabBarView.DefaultTabController 上一篇我们说了BottmNavigationBar底部导航 ...

  10. 阿里、网易和腾讯面试题 C/C++

    一.线程.锁 1.Posix Thread互斥锁 线程锁创建 a.静态创建 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; b.动态创建 pthr ...