代理损失函数(surrogate loss function)
Surrogate loss function,中文可以译为代理损失函数。当原本的loss function不便计算的时候,我们就会考虑使用surrogate loss function。
在二元分类问题中,假如我们有\(n\)个训练样本\(\{(X_1,y_1),(X_2,y_2),\cdots,(X_n,y_n)\}\),其中\(y_i\in\{0,1\}\)。为了量化一个模型的好坏,我们通常使用一些损失函数,损失函数越小,模型越好。最常用的损失函数就是零一损失函数\(l(\hat y,y)\)。
\[
l(y, \hat y)=\sum_{i=1}^m\chi(y_i\neq\hat y_i).
\]
比如说,测试集里有5个数据点,真实分类为\(y=(1,1,1,-1,-1)\),预测分类为\(\hat y =(1,-1,1,1,-1)\)。那么
\[
l(y, \hat y)=0+1+0+1+0=2.
\]
对于一个loss function\(l\),我们的目标是要找到一个最优的分类器\(h\),使得这个分类器在测试样本上的期望损失最小。数学式子表达是
\[
\min_{h}\mathbb{E}_{X\times y}[l(y, h(X))].
\]
理论上,我们是可以直接对上式进行优化,得到最优的分类器\(h\)。然而这个过程是非常困难的(甚至不可行)。其一是因为\(X\times y\)的概率分布是未知的,所以计算loss的期望是不可行的。另外一个难处是这个期望值很难进行优化,因为这个loss function是非连续的,这个优化问题本质是NP-Hard的。举个例子来说,假定\(X\in\mathbb{R}^2\),我们希望找一个线性分类器
\[
h(X)=\begin{cases}1, ~Xw\geq 0\\ -1, ~Xw<0 \end{cases}
\]
使得loss的期望最小化。所以我们也就是求解\(w=(w_1, w_2)^T\)。关于\(w_1,w_2\)以及loss的图像大致如下,

这个函数显然是非连续的。我们常用的优化方法,比如梯度下降,对此都失效了。正因此,我们可以考虑一个与零一损失相接近的函数,作为零一损失的替身。这个替身我们就称作surrogate loss function代理损失函数。为了计算的便利,这个函数通常是凸函数。例如逻辑回归的loss function,\(\log(1+e^{-yXw})\),就是光滑可导的,更容易被求解。

最后补充几句。当我们把原来的零一损失函数替代为其他损失函数的时候,我们自然会问,当我们对代理损失函数进行优化的时候,原来的零一损失是否也被最小化了?它们的差距是多少呢?如果最优化代理损失函数的同时我们也最优化了原本的损失函数,我们就称校对性(calibration)或者一致性(consistency)。这个性质与我们所选择的代理损失函数相关。一个重要的定理是,如果代理损失函数是凸函数,并且在0点可导,其导数小于0,那么它一定是具有一致性的。这也是为什么我们通常选择凸函数作为我们的loss function的原因之一。
下图是零一损失函数与logloss,hinge loss,squared hinge loss以及modified Huber loss的联系。

代理损失函数(surrogate loss function)的更多相关文章
- 【深度学习】一文读懂机器学习常用损失函数(Loss Function)
最近太忙已经好久没有写博客了,今天整理分享一篇关于损失函数的文章吧,以前对损失函数的理解不够深入,没有真正理解每个损失函数的特点以及应用范围,如果文中有任何错误,请各位朋友指教,谢谢~ 损失函数(lo ...
- 惩罚因子(penalty term)与损失函数(loss function)
penalty term 和 loss function 看起来很相似,但其实二者完全不同. 惩罚因子: penalty term的作用是把受限优化问题转化为非受限优化问题. 比如我们要优化: min ...
- 对数损失函数(Logarithmic Loss Function)的原理和 Python 实现
原理 对数损失, 即对数似然损失(Log-likelihood Loss), 也称逻辑斯谛回归损失(Logistic Loss)或交叉熵损失(cross-entropy Loss), 是在概率估计上定 ...
- Tensorflow 损失函数(loss function)及自定义损失函数(三)
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/limiyudianzi/article ...
- 损失函数(Loss Function)
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 线性回归中提到最小二乘损失函数及其相关知识.对于这一部分知识不清楚的同学可以参考上一篇文章<线性回归 ...
- 损失函数(loss function)
通常而言,损失函数由损失项(loss term)和正则项(regularization term)组成.发现一份不错的介绍资料: http://www.ics.uci.edu/~dramanan/te ...
- 损失函数 hinge loss vs softmax loss
1. 损失函数 损失函数(Loss function)是用来估量你模型的预测值 f(x) 与真实值 Y 的不一致程度,它是一个非负实值函数,通常用 L(Y,f(x)) 来表示. 损失函数越小,模型的鲁 ...
- logistic回归具体解释(二):损失函数(cost function)具体解释
有监督学习 机器学习分为有监督学习,无监督学习,半监督学习.强化学习.对于逻辑回归来说,就是一种典型的有监督学习. 既然是有监督学习,训练集自然能够用例如以下方式表述: {(x1,y1),(x2,y2 ...
- 损失函数(Loss Function) -1
http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf Loss Function 损失函数 ...
随机推荐
- DT-06 For Homekit
一. 配置DT-06上网 连接此热点,会自动弹出wifi配置页面. 输入选中的路由密码,点 Join加入,如果路由没有出现在列表中,点 Other手工输入(仅支持2.4g路由配置) 二.配置dt-06 ...
- caddy(四)Run详解
caddy(四)Run详解 前言 平时我们使用 caddy 都是使用 它的 二进制 分发文件,我们现在来分析 caddy 的 Run 函数.从最外层抽象的看它都做了些什么. Caddy Run 我们来 ...
- 性能测试学习第二天-----loadrunner常用函数大全及设置项
常用函数大全: 1,C语言参数转web参数 lr_save_string("aaa","param"):将字符串“aaa”或者一个字符串变量,转变成LR的参数{ ...
- Python 字符串的所有方法详解
name = "my name is {name} and my age is {age}" # 首字母大写 name.capitalize() # 统计某个字符的个数 name. ...
- Mybatis框架(9)---Mybatis自定义插件生成雪花ID做为表主键项目
Mybatis自定义插件生成雪花ID做为主键项目 先附上项目项目GitHub地址 spring-boot-mybatis-interceptor 有关Mybatis雪花ID主键插件前面写了两篇博客作为 ...
- Swoole引擎原理的快速入门干货
更多内容,欢迎关注微信公众号:全菜工程师小辉~ 过去一年使用PHP和Java两种技术栈完成了一个游戏服务器项目.由于项目中有高频的网络请求,所以PHP技术栈尝试使用Swoole引擎(基于事件的高性能异 ...
- Java8中Instant和LocalDate来计算时间或者日期间隔
/** * java.time.Instant * java.time.Duration * Instant 默认使用UTC时区:2019-01-24T14:01:32.258Z * mongo中的时 ...
- 高并发下,调整IIS相关的设置,以提高服务器并发量
1.修改 IIS 队列长度 参考资料:https://docs.microsoft.com/zh-cn/previous-versions/office/communications-server/d ...
- Hugo
快速开始 安装Hugo 1.二进制安装(推荐:简单.快速) 到 Hugo Releases 下载对应的操作系统版本的Hugo二进制文件(hugo或者hugo.exe) Mac下直接使用 ==Homeb ...
- HDU 4417
题意略. 思路: 仔细思考这个题目会发现,它其实是要你查询两次,第一是要规定l,r的范围,第二是要在范围内查询小于等于H的个数.所以有的人说要用主席树. 现在,如果我们能省去范围内对h的查询呢?也就是 ...