HDU 1069 dp最长递增子序列
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Description
The researchers have n types of blocks, and an unlimited
supply of blocks of each type. Each type-i block was a rectangular solid
with linear dimensions (xi, yi, zi). A block could be reoriented so
that any two of its three dimensions determined the dimensions of the
base and the other dimension was the height.
They want to make sure that the tallest tower possible by
stacking blocks can reach the roof. The problem is that, in building a
tower, one block could only be placed on top of another block as long as
the two base dimensions of the upper block were both strictly smaller
than the corresponding base dimensions of the lower block because there
has to be some space for the monkey to step on. This meant, for example,
that blocks oriented to have equal-sized bases couldn't be stacked.
Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.
Input
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
Output
numbered sequentially starting from 1) and the height of the tallest
possible tower in the format "Case case: maximum height = height".
Sample Input
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
Sample Output
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
struct node{
int x,y,z;
}que[];
int dp[];
int tot; void addedge(int x,int y,int z){
que[tot].x=x;
que[tot].y=y;
que[tot++].z=z; que[tot].x=x;
que[tot].y=z;
que[tot++].z=y; que[tot].x=y;
que[tot].y=x;
que[tot++].z=z; que[tot].x=y;
que[tot].y=z;
que[tot++].z=x; que[tot].x=z;
que[tot].y=x;
que[tot++].z=y; que[tot].x=z;
que[tot].y=y;
que[tot++].z=x;
} bool cmp(struct node t1,struct node t2){
if(t1.x!=t2.x)
return t1.x>t2.x;
else if(t1.x==t2.x&&t1.y!=t2.y)
return t1.y>t2.y;
else
return t1.z>t2.z;
} int main(){
int n;
int cas=;
while(scanf("%d",&n)!=EOF){
if(!n)
break;
memset(dp,,sizeof(dp));
tot=;
int x,y,z;
for(int i=;i<n;i++){
scanf("%d%d%d",&x,&y,&z);
addedge(x,y,z);
}
sort(que+,que+tot+,cmp);
dp[]=que[].z;
for(int i=;i<tot;i++){
dp[i]=que[i].z;
for(int j=i-;j>=;j--){
if(que[i].x<que[j].x&&que[i].y<que[j].y&&dp[i]<dp[j]+que[i].z)
dp[i]=dp[j]+que[i].z;
}
}
int ans=-;
for(int i=;i<tot;i++)
ans=max(ans,dp[i]);
printf("Case %d: maximum height = %d\n",cas++,ans);
}
return ;
}
HDU 1069 dp最长递增子序列的更多相关文章
- [DP]最长递增子序列
#include <iostream> #include <limits.h> #include <vector> #include <algorithm&g ...
- HDU-1160-FatMouse's Speed(DP, 最长递增子序列)
链接: https://vjudge.net/problem/HDU-1160 题意: FatMouse believes that the fatter a mouse is, the faster ...
- hdu 1025 dp 最长上升子序列
//Accepted 4372 KB 140 ms //dp 最长上升子序列 nlogn #include <cstdio> #include <cstring> #inclu ...
- poj 1631 Bridging signals (二分||DP||最长递增子序列)
Bridging signals Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9234 Accepted: 5037 ...
- HDU 1257 最少拦截系统 最长递增子序列
HDU 1257 最少拦截系统 最长递增子序列 题意 这个题的意思是说给你\(n\)个数,让你找到他最长的并且递增的子序列\((LIS)\).这里和最长公共子序列一样\((LCS)\)一样,子序列只要 ...
- dp之最长递增子序列模板poj3903
最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS.排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个序列d[1..9] = ...
- 动态规划(DP),最长递增子序列(LIS)
题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...
- Longest Increasing Subsequences(最长递增子序列)的两种DP实现
一.本文内容 最长递增子序列的两种动态规划算法实现,O(n^2)及O(nlogn). 二.问题描述 最长递增子序列:给定一个序列,从该序列找出最长的 升序/递增 子序列. 特点:1.子序列不要 ...
- 求解最长递增子序列(LIS) | 动态规划(DP)+ 二分法
1.题目描述 给定数组arr,返回arr的最长递增子序列. 2.举例 arr={2,1,5,3,6,4,8,9,7},返回的最长递增子序列为{1,3,4,8,9}. 3.解答 ...
随机推荐
- ecshop后台【订单管理】
1.订单列表页,在‘确认’,‘无效’,’取消‘....增加一个选项’导出exl表格‘ a.增加html代码,order_list.htm <input name="print" ...
- Crontab的格式
第1列分钟1-59第2列小时1-23(0表示子夜)第3列日1-31第4列月1-12第5列星期0-6(0表示星期天)第6列要运行的命令 下面是crontab的格式:分 时 日 月 星期 要运行的命令 这 ...
- gradle init.gradle的文件配置 使用
init.gradle文件在build开始之前执行,所以你可以在这个文件配置一些你想预先加载的操作例如配置build日志输出.配置你的机器信息,比如jdk安装目录,配置在build时必须个人信息,比如 ...
- html页面 代码 编写的 一些 基本素养 约定 知识点
hmtl代码书写也要养成一段一段的 区块代码, 每个区块代码 进行 html的 功能注释 自由文字的获得: (lorem ipsum: 乱数假文, 哑元文字) lorem ipsum: lipsum等 ...
- abrtd是什么进程
abrtd 是一个守护进程监控的应用程序崩溃.当发生崩溃时,它将收集的崩溃(核心文件的命令行, etc .)application ,并采取措施根据类型崩溃并根据 abrt.conf config 文 ...
- $(document).ready(){}、$(fucntion(){})、(function(){})(jQuery)onload()的区别
1.首先说JQuery的几个写法 $(function(){ //do someting }); $(document).ready(function(){ //do so ...
- IIS7.5 在已有的WEB网站上配置FTP发布
IIS7.5 有了很多新特性,例如FashCGI,Rewrite 模块的内置,简易的FTP发布等等,但是即使是微软,也没有详细的文档,本文详细的介绍了如何在现有的WEB网站上建立FTP发布. IIS ...
- C# 中excel操作
c#中设置Excel单元格格式 1.全表自动列宽 mysheet.Cells.Select(); mysheet.Cells.Columns.AutoFit(); 2.合并 excelRa ...
- POJ 1845 Sumdiv
快速幂+等比数列求和.... Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 12599 Accepted: 305 ...
- Ubuntu 12 安装 搜狗输入法
下载地址:http://pinyin.sogou.com/linux/?r=pinyin Ubuntu 12 中,安装搜狗输入法注意事项 http://pinyin.sogou.com/linux/h ...