1、题目大意:给一棵树和M值,每个点有两个权值C和L,选x个点,这x个点的C值的和不能超过M,且这x个点如果都在某个子树内

定义满意度为x*这个子树的根的L值

2、分析:这是一道可并堆的题目,我们考虑每一个子树,我们想让其中的选的点尽量多但是C和却不超过M

我们只需取C值最小的,次小的,第三小的……直到不能选为止,这个不是很简单吗,不就是一个堆吗

不对,难道对于每一个子树都要建一个堆吗,那不是爆了吗,我们只需把这个子树的所有子节点所在的堆全都合并

还要再加上这个子树的根节点,这样就可以了

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;
#define M 1000000
#define LL long long
struct merge_heap{
    int l[M], r[M], d[M], value[M];
    void init(){
        memset(l, 0, sizeof(r));
        memset(r, 0, sizeof(r));
        memset(d, 1, sizeof(d));
    }
    int merge(int x, int y){
        if(!x) return y;
        if(!y) return x;
        if(value[x] < value[y]) swap(x, y);
        r[x] = merge(r[x], y);
        if(d[l[x]] < d[r[x]]){
            swap(l[x], r[x]);
        }
        d[x] = d[l[x]] + 1;
        return x;
    }
} wt;
int n, m;
int C[M], L[M];
int head[M], Next[M], son[M], tot;
int tree[M];
int sum[M], size[M];
LL ans = 0;
void dfs(int x){
    for(int i = head[x]; i != -1; i = Next[i]){
        dfs(son[i]);
        sum[x] += sum[son[i]];
        size[x] += size[son[i]];
        tree[x] = wt.merge(tree[x], tree[son[i]]);
        while(sum[x] > m){
            size[x] --;
            sum[x] -= wt.value[tree[x]];
            tree[x] = wt.merge(wt.l[tree[x]], wt.r[tree[x]]);
        }
    }
    ans = max((LL)L[x] * (LL)size[x], ans);
}
int main(){
    memset(head, -1, sizeof(head));
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i ++){
        int fa;
        scanf("%d%d%d", &fa, &C[i], &L[i]);
        wt.value[i] = C[i];
        Next[++ tot] = head[fa];
        head[fa] = tot;
        son[tot] = i;
        sum[i] = C[i];
        size[i] = 1;
    }
    wt.init();
    for(int i = 1; i <= n; i ++) tree[i] = i;
    dfs(0);
    printf("%lld\n", ans);
    return 0;
} 

BZOJ2809——[Apio2012]dispatching的更多相关文章

  1. bzoj2809 [Apio2012]dispatching(左偏树)

    [Apio2012]dispatching Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 M ...

  2. BZOJ2809: [Apio2012]dispatching

    传送门 主席树经典题. 首先把树搞出来,然后搞出来DFS序.然后离散化点权,在DFS序上建立主席树. 对于每个点对应的区间,查找对应的区间最大的点数即可. //BZOJ2809 //by Cydiat ...

  3. BZOJ2809 [Apio2012]dispatching 可并堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2809 题意概括 n个点组成一棵树,每个点都有一个领导力和费用,可以让一个点当领导,然后在这个点的子 ...

  4. [BZOJ2809][Apio2012]dispatching(左偏树)

    首先对于一个节点以及它的子树,它的最优方案显然是子树下选最小的几个 用左偏树维护出每棵子树最优方案的节点,记录答案 然后它的这棵树可以向上转移给父节点,将所有子节点的左偏树合并再维护就是父节点的最优方 ...

  5. 【DFS序】【莫队算法】【权值分块】bzoj2809 [Apio2012]dispatching

    题意:在树中找到一个点i,并且找到这个点子树中的一些点组成一个集合,使得集合中的所有点的c之和不超过M,且Li*集合中元素个数和最大 首先,我们将树处理出dfs序,将子树询问转化成区间询问. 然后我们 ...

  6. bzoj2809 [Apio2012]dispatching——左偏树(可并堆)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2809 思路有点暴力和贪心,就是 dfs 枚举每个点作为管理者: 当然它的子树中派遣出去的忍者 ...

  7. [BZOJ2809][Apio2012]dispatching 贪心+可并堆

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2809 我们考虑以每一个节点作为管理者所得的最优答案,一定是优先选择所要薪水少的忍者.那么首 ...

  8. 【BZOJ2809】[Apio2012]dispatching 可并堆

    [BZOJ2809][Apio2012]dispatching Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 M ...

  9. 【bzoj2809】[Apio2012]dispatching 左偏树

    2016-05-31  15:56:57 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2809 直观的思想是当领导力确定时,尽量选择薪水少的- ...

随机推荐

  1. sudo和rpm命令

    sudo是linux系统管理指令,是允许系统管理员让普通用户执行一些或者全部的root命令的一个工具,如halt,reboot,su等等.这样不仅减少了root用户的登录 和管理时间,同样也提高了安全 ...

  2. java编程思想-java中的并发(一)

    一.基本的线程机制 并发编程使我们可以将程序划分为多个分离的.独立运行的任务.通过使用多线程机制,这些独立任务中的每一个都将由执行线程来驱动. 线程模型为编程带来了便利,它简化了在单一程序中同时jia ...

  3. Javascript setTimeout 带参数延迟执行 闭包实现

    不是原创,只是 借鉴别人的成果,我在此纪念 1.htm function GetDateT() { var d,s; d = new Date(); s = d.getFullYear() + &qu ...

  4. 英文分词算法(Porter stemmer)

    http://blog.csdn.net/whuslei/article/details/7398443 最近需要对英文进行分词处理,希望能够实现还原英文单词原型,比如 boys 变为 boy 等. ...

  5. C#操作XML,如何获取指定节点值?

    博客园提问,结合网友回答http://q.cnblogs.com/q/36082/   打开是treelist树形显示xml所有节点,递归来实现 xmlDoc = new XmlDocument(); ...

  6. ubuntu下安装TexLive和Texmaker

    也可以参考ubuntu14.04配置中文latex完美环境(texlive+texmaker+lyx) 设置中文字体的时候参考ubuntu 下安装 texlive 并设置 ctex 中文套装 1.首先 ...

  7. C语言getopt()函数的使用

    getopt(分析命令行参数)     相关函数表头文件         #include<unistd.h>定义函数         int getopt(int argc,char * ...

  8. java 使用BeanUtils.copyProperties(Object source,Object target) 复制字段值

    BeanUtils.copyProperties(person, wsPerson);把person的字段值,复制给wsPerson // 只复制两个实体中,字段名称一样的 很有用的一个功能...

  9. Block 及注意事项

    block 概念 block 是 C 语言的 是一种数据类型,可以当作参数传递 是一组预先准备好的代码,在需要的时候执行 block 的注意事项 (1)block 在实现时就会对它引用到的它所在方法中 ...

  10. 网页JQ基础之jq-隐藏以及显示特效

    简单的 隐藏以及显示的 JQ 的代码如下: <!DOCTYPE html> <html> <head> <script src="/jquery/j ...