1、题目大意:给一棵树和M值,每个点有两个权值C和L,选x个点,这x个点的C值的和不能超过M,且这x个点如果都在某个子树内

定义满意度为x*这个子树的根的L值

2、分析:这是一道可并堆的题目,我们考虑每一个子树,我们想让其中的选的点尽量多但是C和却不超过M

我们只需取C值最小的,次小的,第三小的……直到不能选为止,这个不是很简单吗,不就是一个堆吗

不对,难道对于每一个子树都要建一个堆吗,那不是爆了吗,我们只需把这个子树的所有子节点所在的堆全都合并

还要再加上这个子树的根节点,这样就可以了

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;
#define M 1000000
#define LL long long
struct merge_heap{
    int l[M], r[M], d[M], value[M];
    void init(){
        memset(l, 0, sizeof(r));
        memset(r, 0, sizeof(r));
        memset(d, 1, sizeof(d));
    }
    int merge(int x, int y){
        if(!x) return y;
        if(!y) return x;
        if(value[x] < value[y]) swap(x, y);
        r[x] = merge(r[x], y);
        if(d[l[x]] < d[r[x]]){
            swap(l[x], r[x]);
        }
        d[x] = d[l[x]] + 1;
        return x;
    }
} wt;
int n, m;
int C[M], L[M];
int head[M], Next[M], son[M], tot;
int tree[M];
int sum[M], size[M];
LL ans = 0;
void dfs(int x){
    for(int i = head[x]; i != -1; i = Next[i]){
        dfs(son[i]);
        sum[x] += sum[son[i]];
        size[x] += size[son[i]];
        tree[x] = wt.merge(tree[x], tree[son[i]]);
        while(sum[x] > m){
            size[x] --;
            sum[x] -= wt.value[tree[x]];
            tree[x] = wt.merge(wt.l[tree[x]], wt.r[tree[x]]);
        }
    }
    ans = max((LL)L[x] * (LL)size[x], ans);
}
int main(){
    memset(head, -1, sizeof(head));
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i ++){
        int fa;
        scanf("%d%d%d", &fa, &C[i], &L[i]);
        wt.value[i] = C[i];
        Next[++ tot] = head[fa];
        head[fa] = tot;
        son[tot] = i;
        sum[i] = C[i];
        size[i] = 1;
    }
    wt.init();
    for(int i = 1; i <= n; i ++) tree[i] = i;
    dfs(0);
    printf("%lld\n", ans);
    return 0;
} 

BZOJ2809——[Apio2012]dispatching的更多相关文章

  1. bzoj2809 [Apio2012]dispatching(左偏树)

    [Apio2012]dispatching Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 M ...

  2. BZOJ2809: [Apio2012]dispatching

    传送门 主席树经典题. 首先把树搞出来,然后搞出来DFS序.然后离散化点权,在DFS序上建立主席树. 对于每个点对应的区间,查找对应的区间最大的点数即可. //BZOJ2809 //by Cydiat ...

  3. BZOJ2809 [Apio2012]dispatching 可并堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2809 题意概括 n个点组成一棵树,每个点都有一个领导力和费用,可以让一个点当领导,然后在这个点的子 ...

  4. [BZOJ2809][Apio2012]dispatching(左偏树)

    首先对于一个节点以及它的子树,它的最优方案显然是子树下选最小的几个 用左偏树维护出每棵子树最优方案的节点,记录答案 然后它的这棵树可以向上转移给父节点,将所有子节点的左偏树合并再维护就是父节点的最优方 ...

  5. 【DFS序】【莫队算法】【权值分块】bzoj2809 [Apio2012]dispatching

    题意:在树中找到一个点i,并且找到这个点子树中的一些点组成一个集合,使得集合中的所有点的c之和不超过M,且Li*集合中元素个数和最大 首先,我们将树处理出dfs序,将子树询问转化成区间询问. 然后我们 ...

  6. bzoj2809 [Apio2012]dispatching——左偏树(可并堆)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2809 思路有点暴力和贪心,就是 dfs 枚举每个点作为管理者: 当然它的子树中派遣出去的忍者 ...

  7. [BZOJ2809][Apio2012]dispatching 贪心+可并堆

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2809 我们考虑以每一个节点作为管理者所得的最优答案,一定是优先选择所要薪水少的忍者.那么首 ...

  8. 【BZOJ2809】[Apio2012]dispatching 可并堆

    [BZOJ2809][Apio2012]dispatching Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 M ...

  9. 【bzoj2809】[Apio2012]dispatching 左偏树

    2016-05-31  15:56:57 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2809 直观的思想是当领导力确定时,尽量选择薪水少的- ...

随机推荐

  1. 机器学习实战------利用logistics回归预测病马死亡率

    大家好久不见,实战部分一直托更,很不好意思.本文实验数据与代码来自机器学习实战这本书,倾删. 一:前期代码准备 1.1数据预处理 还是一样,设置两个数组,前两个作为特征值,后一个作为标签.当然这是简单 ...

  2. ecshop 远程图片本地化

    define('IN_ECS', true); require(dirname(__FILE__) . '/includes/init.php'); $smarty->assign('siteD ...

  3. JS-DOM2级事件对象跨浏览器处理(已封装)

    var eventUill = { //添加事件 addHander: function(element, type, handler) { if(element.addEventListener) ...

  4. CSS3-box-flex弹性盒布局

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  5. HBase与MongDB等NoSQL数据库对照

    HBase概念学习(十)HBase与MongDB等NoSQL数据库对照 转载请注明出处: jiq•钦's technical Blog - 季义钦 一.开篇 淘宝之前使用的存储层架构一直是MySQL数 ...

  6. CIQRCodeGenerator Core Image Filter Reference

    https://developer.apple.com/library/prerelease/content/documentation/GraphicsImaging/Reference/CoreI ...

  7. Interface/接口

    1. 类和结构能够实现接口 2. 接口声明包含如下四种类型:属性.方法.事件和索引:这些函数声明不能包含任何实现代码,而在每一个成员的主体后必须使用分号 3. 继承接口的类或结构必须实现接口中的所有成 ...

  8. sql优化之not in

    sql : select ID from awhere XX <> 0 and ID not in (select ID from b) 4万多条记录,执行了316秒,无法接受.   优化 ...

  9. 使用ASP.NET Web Api构建基于REST风格的服务实战系列教程【七】——实现资源的分页

    系列导航地址http://www.cnblogs.com/fzrain/p/3490137.html 前言 这篇文章我们将使用不同的方式实现手动分页(关于高端大气上档次的OData本文暂不涉及,但有可 ...

  10. DrawCall

    [精]draw call 理解和优化 http://bubuko.com/infodetail-387899.html DrawCall 优化 . http://www.cnblogs.com/sof ...