PRML读书笔记——Introduction
1.1. Example: Polynomial Curve Fitting
1. Movitate a number of concepts:
(1) linear models: Functions which are linear in the unknow parameters. Polynomail is a linear model. For the Polynomail curve fitting problem, the models is :

which is a linear model.
(2) error function: error function measures the misfit between the prediction and the training set point. For instance, sum of the squares of the errors is one simple function, which is widely used, and is given:

(3) model comparison or model selection
(4) over-fitting: the model abtains excellent fit to training data and give a very poor performance on test data. And this behavior is known as over-fitting.
(5) regularization: One technique which is often used to control the over-fitting phenomenon, and it involves adding a penalty term to the error function in order to discourage the coefficients from reaching large values. The simplest such penalty term takes the form of a sum of aquares of all of the coefficients, leading to a modified error function of the form:

And this particular case of a quadratic regularizer is called ridge regression (Hoerl and Kennard, 1970). In the context of neural networks, this approach is known as weight decay.
(6) validation set, also called a hold-out set: If we were trying to solve a practical application using this approach of minimizing an error function, we would have to find a way to determine a suitable value for the model complexity. a simple way of achieving this, namely by taking the available data and partitioning it into a training set, used to determine the coefficients w, and a separate validation set, also called a hold-out set, used to optimize the model complexity.
1.2. Probability Theory
1. The rules of probability. Sum rule and product rule.

2. Bayes’ theorem.


3. Probability densities
4. Expectations and covariances
5. Bayesian probabilities.
Bayes’ theorem was used to convert a prior probability into a posterior probability by incorporating the evidence provided by the observed data.
6. Gaussian distribution


7.maximizing the posterior distribution is equivalent to minimizing the regularized sum-of-squares error function.
1.3. Model Selection
1.6. Information Theory
1 entropy

PRML读书笔记——Introduction的更多相关文章
- PRML读书笔记——3 Linear Models for Regression
Linear Basis Function Models 线性模型的一个关键属性是它是参数的一个线性函数,形式如下: w是参数,x可以是原始的数据,也可以是关于原始数据的一个函数值,这个函数就叫bas ...
- PRML读书笔记——机器学习导论
什么是模式识别(Pattern Recognition)? 按照Bishop的定义,模式识别就是用机器学习的算法从数据中挖掘出有用的pattern. 人们很早就开始学习如何从大量的数据中发现隐藏在背后 ...
- PRML读书笔记——2 Probability Distributions
2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta dis ...
- PRML读书笔记——Mathematical notation
x, a vector, and all vectors are assumed to be column vectors. M, denote matrices. xT, a row vcetor, ...
- 【PRML读书笔记-Chapter1-Introduction】1.6 Information Theory
熵 给定一个离散变量,我们观察它的每一个取值所包含的信息量的大小,因此,我们用来表示信息量的大小,概率分布为.当p(x)=1时,说明这个事件一定会发生,因此,它带给我的信息为0.(因为一定会发生,毫无 ...
- 【PRML读书笔记-Chapter1-Introduction】1.5 Decision Theory
初体验: 概率论为我们提供了一个衡量和控制不确定性的统一的框架,也就是说计算出了一大堆的概率.那么,如何根据这些计算出的概率得到较好的结果,就是决策论要做的事情. 一个例子: 文中举了一个例子: 给定 ...
- 【PRML读书笔记-Chapter1-Introduction】1.4 The Curse of Dimensionality
维数灾难 给定如下分类问题: 其中x6和x7表示横轴和竖轴(即两个measurements),怎么分? 方法一(simple): 把整个图分成:16个格,当给定一个新的点的时候,就数他所在的格子中,哪 ...
- 【PRML读书笔记-Chapter1-Introduction】1.3 Model Selection
在训练集上有个好的效果不见得在测试集中效果就好,因为可能存在过拟合(over-fitting)的问题. 如果训练集的数据质量很好,那我们只需对这些有效数据训练处一堆模型,或者对一个模型给定系列的参数值 ...
- 【PRML读书笔记-Chapter1-Introduction】1.2 Probability Theory
一个例子: 两个盒子: 一个红色:2个苹果,6个橘子; 一个蓝色:3个苹果,1个橘子; 如下图: 现在假设随机选取1个盒子,从中.取一个水果,观察它是属于哪一种水果之后,我们把它从原来的盒子中替换掉. ...
随机推荐
- jQuery Ajax遍历表格,填充数据,将表格中的数据一条一条拼成Jason数组
$.ajax({ url: baseURL + "InvoiceSale/OnQuotaInvoiceSale", //点击核销单号时,点击核销时,交互的页面 ...
- 转:45 个 LoadRunner 面试问题(附答案)_纯英文,太有逼格了
What is load testing? - Load testing is to test that if the application works fine with the loads th ...
- 2076. The Drunk Jailer
Problem A certain prison contains a long hall of n cells, each right next to each other. Each cell h ...
- About_PHP
所谓PHP: 超文本预处理器 外文名称 Hypertext Preprocessor 编程范型 面向对象.命令式编程 php就是比js更高端的一种语言. 语法有两种: <?php ?& ...
- Func<T, TResult> Delegate
public delegate TResult Func<in T, out TResult>( T arg ) http://msdn.microsoft.com/en-us/libra ...
- android-对话框
一.常用对话框 AlertDialog: 功能最丰富,实际应用最广的对话框(以下三种对话框都是该对话框的子类) ProgressDialog:进度对话框.这个对话框只是对进度条的包装 DatePick ...
- JSOUP选择器语法说明
jsoup 是一款基于Java 的HTML解析器,可直接解析某个URL地址或HTML文本内容.它提供了一套非常省力的API,可通过DOM,CSS以及类似于jQuery的操作方法来取出和操作数据.jso ...
- Week1 学长的经验教训
我手头拿到的是上一届学长的软件工程大作业,作业的名称是——汽车4S店信息管理系统. 这个大作业我认为还是非常典型的传统模式的大作业,由手机端(客户端)和服务端组成,非常的传统. ...
- 【HDU4585 Shaolin】map的经典运用
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4585 题意大意:很多人想进少林寺,少林寺最开始只有一个和尚,每个人有有一个武力值,若这个人想进少林,必 ...
- Greenplum 生成加分区语句
在使用greenplum中会使用分区表,但同时分区表需要维护分区:比如加分区,这个过程比较痛苦,查询相关资料以后有了相应的解决办法,但是该办法也不是万能的,有诸多限制,关于限制有兴趣的同学可以查看我文 ...