Description

standard input/output 
Statements

Alex is known to be very clever, but Walter does not believe that. In order to test Alex, he invented a new game. He gave Alex nnodes, and a list of queries. Walter then gives Alex one query every second, there are two types of queries:

 means: adding an undirected edge between nodes u and v.

 means: what was the earliest time (query index) when u and v became connected? 2 nodes are connected if there is a path of edges between them. Alex can solve this problem easily, but he is too busy now, so he is asking for your help.

Input

The first line contains an integer T, the number of test cases. Each test case begins with a line containing two integers (1 ≤ n, m ≤ 105), the number of nodes and queries, respectively. Then there are m lines, each line represents a query and contains three integers,typeu and v ( , 1 ≤ u, v ≤ n)

Output

For each query of type 2, print one line with one integer, the answer to the query. If the 2 nodes in the query are not connected, print -1.

Sample Input

Input
1
4 5
1 1 2
2 1 2
1 2 3
2 1 3
2 1 4
Output
1
3
-1

Hint

Warning: large Input/Output data, be careful with certain languages.

2016寒假训练04C,赛后补的:题意是给出m中操作,分别是1, u, v,既节点u,v之间连一条边,2, u, v即询问是最早是第几次操作使得u,v联通

可以用并查集维护连通性,如果(u, v)已经联通,那么对于操作1,(u,v)就不再连边,这样对于每一个联通块得到的是一颗树,所有的联通块对应于森林

维护mx[u][i]表示节点u到其第2^i个祖先之间边权的最大值,这样在查询lca的时候就能得到u, v之间路径的最大边权,就是对应于2的答案

#include <bits/stdc++.h>
using namespace std;
const int N = ;
const int DEG = ;
typedef pair<int, int> pii;
int head[N], tot;
struct Edge {
int v, w, next;
Edge() {}
Edge(int v, int w, int next) : v(v), w(w), next(next) {}
}e[N << ];
struct Query {
int u, v, w;
Query() {}
Query(int u, int v, int w) : u(u), v(v), w(w) {}
}q[N];
int f[N][DEG + ], mx[N][DEG + ], fa[N], deg[N];
void init(int n) {
for(int i = ; i <= n; ++i) fa[i] = i;
memset(head, -, sizeof head);
tot = ;
}
void add(int u, int v, int w) {
e[tot] = Edge(v, w, head[u]);
head[u] = tot++;
}
int find(int x) {
return fa[x] == x ?
x : fa[x] = find(fa[x]);
}
void BFS(int rt) {
queue<int> que;
deg[rt] = ;
f[rt][] = rt;
mx[rt][] = ;
que.push(rt);
while(!que.empty()) {
int u = que.front(); que.pop();
for(int i = ; i < DEG; ++i) {
f[u][i] = f[f[u][i - ]][i - ];
mx[u][i] = max(mx[u][i - ], mx[f[u][i-]][i-]);
}
for(int i = head[u]; ~i; i = e[i].next) {
int v = e[i].v;
int w = e[i].w;
if(v == f[u][]) continue;
deg[v] = deg[u] + ;
f[v][] = u;
mx[v][] = w;
que.push(v);
}
}
}
int getmx(int u, int v) {
if(deg[u] > deg[v]) swap(u, v);
int hu = deg[u], hv = deg[v];
int tu = u, tv = v, res = ;
for(int det = hv - hu, i = ; det; det >>= , ++i) {
if(det & ) { res = max(res, mx[tv][i]); tv = f[tv][i]; }
}
if(tu == tv) return res;
for(int i = DEG - ; i >= ; --i)
{
if(f[tu][i] == f[tv][i]) continue;
res = max(res, mx[tu][i]);
res = max(res, mx[tv][i]);
tu = f[tu][i];
tv = f[tv][i];
}
return max(res, max(mx[tu][], mx[tv][]));
}
int main() {
int _; scanf("%d", &_);
while(_ --)
{
int n, m;
scanf("%d%d", &n, &m);
int u, v, t, num = , res;
init(n);
for(int i = ; i <= m; ++i) {
scanf("%d%d%d", &t, &u, &v);
if(t == ) {
int fu = find(u);
int fv = find(v);
if(fu == fv) continue;
fa[fu] = fv;
add(u, v, i);
add(v, u, i);
}else {
q[num++] = Query(u, v, i);
}
}
for(int i = ; i <= n; ++i) if(fa[i] == i) {
BFS(i);
} for(int i = ; i < num; ++i) {
if(q[i].u == q[i].v) puts("");
else {
int fu = find(q[i].u);
int fv = find(q[i].v);
if(fu != fv) puts("-1");
else {
res = getmx(q[i].u, q[i].v);
printf("%d\n", res > q[i].w ? - : res);
}
}
}
}
}

Gym 100814C Connecting Graph 并查集+LCA的更多相关文章

  1. Codeforces Gym 100814C Connecting Graph 树剖并查集/LCA并查集

    初始的时候有一个只有n个点的图(n <= 1e5), 现在进行m( m <= 1e5 )次操作 每次操作要么添加一条无向边, 要么询问之前结点u和v最早在哪一次操作的时候连通了 /* * ...

  2. hdu 2874 Connections between cities (并查集+LCA)

    Connections between cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  3. hdu6074[并查集+LCA+思维] 2017多校4

    看了标答感觉思路清晰了许多,用并查集来维护全联通块的点数和边权和. 用另一个up[]数组(也是并查集)来保证每条边不会被重复附权值,这样我们只要将询问按权值从小到大排序,一定能的到最小的边权和与联通块 ...

  4. Network-POJ3694并查集+LCA

    Network Time Limit: 5000MS   Memory Limit: 65536K       Description A network administrator manages ...

  5. Codeforces Round #286 (Div. 1) D. Mr. Kitayuta's Colorful Graph 并查集

    D. Mr. Kitayuta's Colorful Graph Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/ ...

  6. HDU6074 Phone Call (并查集 LCA)

    Phone Call Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)Tota ...

  7. [并查集+LCA USACO18OPEN ] Disruption

    https://www.luogu.org/problemnew/show/P4374 一看这道题就是一个妙题,然后题解什么树链剖分...珂朵莉树... 还不如并查集来的实在!我们知道并查集本来就是路 ...

  8. Mobile Phone Network CodeForces - 1023F(并查集lca+修改环)

    题意: 就是有几个点,你掌控了几条路,你的商业对手也掌控了几条路,然后你想让游客都把你的所有路都走完,那么你就有钱了,但你又想挣的钱最多,真是的过分..哈哈 游客肯定要对比一下你的对手的路 看看那个便 ...

  9. Codeforces 336D Dima and Trap Graph 并查集

    Dima and Trap Graph 枚举区间的左端点, 然后那些左端点比枚举的左端点小的都按右端点排序然后并查集去check #include<bits/stdc++.h> #defi ...

随机推荐

  1. php策略模式的研究

    <?php abstract class Moshi{     private $num;     public $price;     const Ted=1;     const Sed=2 ...

  2. osgearth 配置mapNode TerrainOptions

    设置瓦片PagedLOD节点最小可视距离因子,默认是6.0 minTileRangeFactor() Map *map = new Map();WWOptions wwImgGlobe;map-> ...

  3. storyboard pushViewController 的时候,新的界面黑屏

    storyboard 创建的一级界面需要通过代码跳转到另一 storyboard 创建的界面的时候,通常我们会这样 其实 alloc init 相当于重新创建一个界面,所以我们 push 进入之后会发 ...

  4. 关于 UICollectionViewCell 的一些陷阱

    如果直接使用 UICollectionViewCell 的自带属性 selected 来自定义一些样式,如: - (void)setSelected:(BOOL)selected { [super s ...

  5. Swift - 开源框架总结

    苹果官方Swift文档<The Swift Programming Language> 苹果开发者Swift文档及介绍 网友整理的Swift中文文档< Apple Swift编程语言 ...

  6. stat file 查看文件的 最新的被访问时间 最近的修改时间 最近的状态改变时间

    [root@NB ~]# stat /media/6FE5-D831/git-data/IT-DOC/web收藏.txt File: `/media/6FE5-D831/git-data/IT-DOC ...

  7. Linux桌面选型

    Arch Linux 官方仓库提供的桌面环境有 Cinnamon: cinnamon Enlightenment: enlightenment17 GNOME: gnome gnome-extra K ...

  8. SQL小纸条--一些方便平时参考的SQL语句--随用随查

    SQL 语句 语句 语法 AND / OR SELECT column_name(s)FROM table_nameWHERE conditionAND|OR condition ALTER TABL ...

  9. Eclipse 快捷键 转换为Netbeans 快捷键

    一直使用netbeans IDE开发,习惯了netbeans的快捷键,最近要开发个app就选择了H5. 接着使用了HBuilder (基于Eclipse开发) 总体来讲这个IDE还可以,不管是代码提示 ...

  10. 一个简单的Promise 实现

    用了这么长时间的promise,也看了很多关于promise 的文章博客,对promise 算是些了解.但是要更深的理解promise,最好的办法还是自己实现一个. 我大概清楚promise 是对异步 ...