Description

standard input/output 
Statements

Alex is known to be very clever, but Walter does not believe that. In order to test Alex, he invented a new game. He gave Alex nnodes, and a list of queries. Walter then gives Alex one query every second, there are two types of queries:

 means: adding an undirected edge between nodes u and v.

 means: what was the earliest time (query index) when u and v became connected? 2 nodes are connected if there is a path of edges between them. Alex can solve this problem easily, but he is too busy now, so he is asking for your help.

Input

The first line contains an integer T, the number of test cases. Each test case begins with a line containing two integers (1 ≤ n, m ≤ 105), the number of nodes and queries, respectively. Then there are m lines, each line represents a query and contains three integers,typeu and v ( , 1 ≤ u, v ≤ n)

Output

For each query of type 2, print one line with one integer, the answer to the query. If the 2 nodes in the query are not connected, print -1.

Sample Input

Input
1
4 5
1 1 2
2 1 2
1 2 3
2 1 3
2 1 4
Output
1
3
-1

Hint

Warning: large Input/Output data, be careful with certain languages.

2016寒假训练04C,赛后补的:题意是给出m中操作,分别是1, u, v,既节点u,v之间连一条边,2, u, v即询问是最早是第几次操作使得u,v联通

可以用并查集维护连通性,如果(u, v)已经联通,那么对于操作1,(u,v)就不再连边,这样对于每一个联通块得到的是一颗树,所有的联通块对应于森林

维护mx[u][i]表示节点u到其第2^i个祖先之间边权的最大值,这样在查询lca的时候就能得到u, v之间路径的最大边权,就是对应于2的答案

#include <bits/stdc++.h>
using namespace std;
const int N = ;
const int DEG = ;
typedef pair<int, int> pii;
int head[N], tot;
struct Edge {
int v, w, next;
Edge() {}
Edge(int v, int w, int next) : v(v), w(w), next(next) {}
}e[N << ];
struct Query {
int u, v, w;
Query() {}
Query(int u, int v, int w) : u(u), v(v), w(w) {}
}q[N];
int f[N][DEG + ], mx[N][DEG + ], fa[N], deg[N];
void init(int n) {
for(int i = ; i <= n; ++i) fa[i] = i;
memset(head, -, sizeof head);
tot = ;
}
void add(int u, int v, int w) {
e[tot] = Edge(v, w, head[u]);
head[u] = tot++;
}
int find(int x) {
return fa[x] == x ?
x : fa[x] = find(fa[x]);
}
void BFS(int rt) {
queue<int> que;
deg[rt] = ;
f[rt][] = rt;
mx[rt][] = ;
que.push(rt);
while(!que.empty()) {
int u = que.front(); que.pop();
for(int i = ; i < DEG; ++i) {
f[u][i] = f[f[u][i - ]][i - ];
mx[u][i] = max(mx[u][i - ], mx[f[u][i-]][i-]);
}
for(int i = head[u]; ~i; i = e[i].next) {
int v = e[i].v;
int w = e[i].w;
if(v == f[u][]) continue;
deg[v] = deg[u] + ;
f[v][] = u;
mx[v][] = w;
que.push(v);
}
}
}
int getmx(int u, int v) {
if(deg[u] > deg[v]) swap(u, v);
int hu = deg[u], hv = deg[v];
int tu = u, tv = v, res = ;
for(int det = hv - hu, i = ; det; det >>= , ++i) {
if(det & ) { res = max(res, mx[tv][i]); tv = f[tv][i]; }
}
if(tu == tv) return res;
for(int i = DEG - ; i >= ; --i)
{
if(f[tu][i] == f[tv][i]) continue;
res = max(res, mx[tu][i]);
res = max(res, mx[tv][i]);
tu = f[tu][i];
tv = f[tv][i];
}
return max(res, max(mx[tu][], mx[tv][]));
}
int main() {
int _; scanf("%d", &_);
while(_ --)
{
int n, m;
scanf("%d%d", &n, &m);
int u, v, t, num = , res;
init(n);
for(int i = ; i <= m; ++i) {
scanf("%d%d%d", &t, &u, &v);
if(t == ) {
int fu = find(u);
int fv = find(v);
if(fu == fv) continue;
fa[fu] = fv;
add(u, v, i);
add(v, u, i);
}else {
q[num++] = Query(u, v, i);
}
}
for(int i = ; i <= n; ++i) if(fa[i] == i) {
BFS(i);
} for(int i = ; i < num; ++i) {
if(q[i].u == q[i].v) puts("");
else {
int fu = find(q[i].u);
int fv = find(q[i].v);
if(fu != fv) puts("-1");
else {
res = getmx(q[i].u, q[i].v);
printf("%d\n", res > q[i].w ? - : res);
}
}
}
}
}

Gym 100814C Connecting Graph 并查集+LCA的更多相关文章

  1. Codeforces Gym 100814C Connecting Graph 树剖并查集/LCA并查集

    初始的时候有一个只有n个点的图(n <= 1e5), 现在进行m( m <= 1e5 )次操作 每次操作要么添加一条无向边, 要么询问之前结点u和v最早在哪一次操作的时候连通了 /* * ...

  2. hdu 2874 Connections between cities (并查集+LCA)

    Connections between cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  3. hdu6074[并查集+LCA+思维] 2017多校4

    看了标答感觉思路清晰了许多,用并查集来维护全联通块的点数和边权和. 用另一个up[]数组(也是并查集)来保证每条边不会被重复附权值,这样我们只要将询问按权值从小到大排序,一定能的到最小的边权和与联通块 ...

  4. Network-POJ3694并查集+LCA

    Network Time Limit: 5000MS   Memory Limit: 65536K       Description A network administrator manages ...

  5. Codeforces Round #286 (Div. 1) D. Mr. Kitayuta's Colorful Graph 并查集

    D. Mr. Kitayuta's Colorful Graph Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/ ...

  6. HDU6074 Phone Call (并查集 LCA)

    Phone Call Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)Tota ...

  7. [并查集+LCA USACO18OPEN ] Disruption

    https://www.luogu.org/problemnew/show/P4374 一看这道题就是一个妙题,然后题解什么树链剖分...珂朵莉树... 还不如并查集来的实在!我们知道并查集本来就是路 ...

  8. Mobile Phone Network CodeForces - 1023F(并查集lca+修改环)

    题意: 就是有几个点,你掌控了几条路,你的商业对手也掌控了几条路,然后你想让游客都把你的所有路都走完,那么你就有钱了,但你又想挣的钱最多,真是的过分..哈哈 游客肯定要对比一下你的对手的路 看看那个便 ...

  9. Codeforces 336D Dima and Trap Graph 并查集

    Dima and Trap Graph 枚举区间的左端点, 然后那些左端点比枚举的左端点小的都按右端点排序然后并查集去check #include<bits/stdc++.h> #defi ...

随机推荐

  1. 【python】dict4ini和xmltodict模块用途

    dict4ini模块:可以读写配置文件 xmltodict模块:将xml和json互相转换  https://pypi.python.org/pypi/xmltodict

  2. 【网络】VPN和代理服务器的区别

    来自:http://www.zhihujingxuan.com/19311.html [scotttony的回答(41票)]: VPN和ssh哪个比较好, 要看你怎么定义是“好”. ssh作为一个创建 ...

  3. 51nod 1605 棋盘问题 (博弈)

    题目:传送门. 题意:中文题.T组数据,每组给定一个n*m的棋盘,棋盘中的1代表黑色,0代表白色,每次可以将1或者非2质数的全黑色方形区域变为白色,不能操作者输,问谁能赢. 题解:每次可以将1或者非2 ...

  4. 在iOS 应用中直接跳转到appstore的方法

    找到应用程序的描述链接,比如:http://itunes.apple.com/gb/app/yi-dong-cai-bian/id391945719?mt=8 然后将 http:// 替换为 itms ...

  5. 如何让Table中的第一列和第二列的值相乘然后赋值给第三列

    因为需求的原因所以这样做,不废话了,直接上代码,我用的GridView绑定的数据,table也一样,因为GridView通过浏览器编译后的代码就是table.下面是aspx页面的Html代码: < ...

  6. Redis事件管理(三)

    Redis的事件管理和定时器的管理都是自己来实现的,Redis的事件管理分为两部分,一部分是封装了系统的异步事件API,还有一部分是在这基础上封装了一个通用的事件管理器,根据具体的系统来决定具体使用哪 ...

  7. iOS 访问粘贴板

    UIPasteboard *pasteboard = [UIPasteboard generalPasteboard]; pasteboard.string = self.label.text;

  8. Android 图片闪烁(延迟切换)

    <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:tools=&q ...

  9. JavaScript的内置对象和浏览器对象

    在javascript中对象通常包括两种类型:内置对象和浏览器对象,此外,用户还可以自定义对象. 对象包含两个要素:1.用来描述对象特性的一组数据,也就是若干变量,通常称为属性.2.用来操作对象特性的 ...

  10. 移除IIS默认的响应头(转载)

    转载地址:http://www.cnblogs.com/dudu/p/iis-remove-response-readers.html 在IIS+ASP.NET的运行环境,默认情况下会输出以下的响应头 ...