The Triangle
- 描述
-
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
(Figure 1)
Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.
- 输入
- Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.
- 输出
- Your program is to write to standard output. The highest sum is written as an integer.
- 样例输入
-
5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
- 样例输出 30
#include <stdio.h>
#include<string.h>
int max(int a, int b){
return (a>b)?a:b;
}
int main()
{
int n;
][];
][];
scanf("%d", &n);
;
; i < n; ++i) {
; j < i+; ++j) {
arr[i][j] = sumdpth[i][j] = ;
scanf("%d", &arr[i][j]);
sumdpth[i][j] = arr[i][j];
}
}
; i < n; ++i) {
; j < i+; ++j) {
){
sumdpth[i][j] = arr[i-][j];
}
sumdpth[i][j] = max(sumdpth[i-][j]+arr[i][j],sumdpth[i-][j-]+arr[i][j]) ;
if(tmpmax < sumdpth[i][j]) tmpmax = sumdpth[i][j];
}
}
printf("%d\n", tmpmax);
/*
for (int i = 0; i < n; ++i) {
for (int j = 0; j < i+1; ++j) {
printf("%d ", arr[i][j]);
}
printf("\n");
}
*/
}
The Triangle的更多相关文章
- [LeetCode] Triangle 三角形
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...
- [LeetCode] Pascal's Triangle II 杨辉三角之二
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3, ...
- [LeetCode] Pascal's Triangle 杨辉三角
Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,Retur ...
- 【leetcode】Pascal's Triangle II
题目简述: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3, Retur ...
- 【leetcode】Pascal's Triangle
题目简述: Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5 ...
- POJ 1163 The Triangle(简单动态规划)
http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS Memory Limit: 10000K Total Submissi ...
- Triangle - Delaunay Triangulator
Triangle - Delaunay Triangulator eryar@163.com Abstract. Triangle is a 2D quality mesh generator an ...
- LeetCode 118 Pascal's Triangle
Problem: Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows ...
- LeetCode 119 Pascal's Triangle II
Problem: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Ret ...
- 【leetcode】Triangle (#120)
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...
随机推荐
- iOS企业级开发初级课程-表视图(13集)
首先了解了表视图的组成.表视图类的构成.表视图的分类以及表视图的两个重要协议(委托协议和数据源协议),对表视图有了一个整体上的认识.接下来我们掌握了如何实现简单表视图和分节表视图,以及表视图中索引.搜 ...
- HDU 5053 the Sum of Cube
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5053 解题报告:用来陶冶情操的题,求a到b的三次方的和. #include<stdio.h> ...
- BZOJ4519——[cqoi2016]不同的最小割
0.题意:求两点之间的最小割的不同的总量 1.分析:裸的分治+最小割,也叫最小割树或GH树,最后用set搞一下就好 #include <set> #include <queue> ...
- Caffe学习系列(11):数据可视化环境(python接口)配置
参考:http://www.cnblogs.com/denny402/p/5088399.html 这节配置python接口遇到了不少坑. 1.我是利用anaconda来配置python环境,在将ca ...
- HTTP协议详解篇(待续)
1.工作流程 HTTP通信机制是在一次完整的HTTP通信过程中,Web浏览器与Web服务器之间将完成下列7个步骤: (1)建立TCP连接 在HTTP工作开始之前,Web浏览器首先要通过网络与Web服务 ...
- @ModelAttribute运用详解
@ModelAttribute使用详解 1.@ModelAttribute注释方法 例子(1),(2),(3)类似,被@ModelAttribute注释的方法会在此controller每个 ...
- HTK搭建语音拨号系统实验材料下载
选自:http://maotong.blog.hexun.com/6267266_d.html 压缩包包括全部的配置文件,脚本文件,必备的模型文件和实验手册. 全部实验材料的下载链接: 1 http: ...
- AFNetworking 2.5.0版本的使用
http://www.mamicode.com/info-detail-477899.html AFNetworking 2.5.0版本的使用 http://afnetworking.com/ htt ...
- IntelliJ IDEA 常用快捷键列表及技巧大全
IntelliJ Idea 常用快捷键列表 Alt+回车 导入包,自动修正Ctrl+N 查找类Ctrl+Shift+N 查找文件Ctrl+Alt+L 格式化代码Ctrl+Alt+O 优化导入的类和 ...
- jenkins集成ansible注意事项Failed to connect to the host via ssh.
在集成jenkins和ansible实现自动化部署时,root用户下执行ansible命令时可以正常运行.由于是通过jenkins用户去执行ansible命令,而jenkins用户却报如下异常: XX ...