Recursive sequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 30    Accepted Submission(s): 20

Problem Description
Farmer John likes to play mathematics games with his N cows. Recently, they are attracted by recursive sequences. In each turn, the cows would stand in a line, while John writes two positive numbers a and b on a blackboard. And then, the cows would say their identity number one by one. The first cow says the first number a and the second says the second number b. After that, the i-th cow says the sum of twice the (i-2)-th number, the (i-1)-th number, and i4

. Now, you need to write a program to calculate the number of the N-th cow in order to check if John’s cows can make it right.

 
Input
The first line of input contains an integer t, the number of test cases. t test cases follow.
Each case contains only one line with three numbers N, a and b where N,a,b < 231

as described above.

 
Output
For each test case, output the number of the N-th cow. This number might be very large, so you need to output it modulo 2147493647.
 
Sample Input
2
3 1 2
4 1 10
 
Sample Output
85
369

Hint

In the first case, the third number is 85 = 2*1十2十3^4.
In the second case, the third number is 93 = 2*1十1*10十3^4 and the fourth number is 369 = 2 * 10 十 93 十 4^4.

 
Source
题意:f[i]=2*f[i-2]+f[i-1]+i^4
题解:[f[i],f[i-1],i^4,i^3,i^2,i,1]
  1 1 0 0 0 0 0
  2 0 0 0 0 0 0
  1 0 1 0 0 0 0
  4 0 4 1 0 0 0
  6 0 6 3 1 0 0
  4 0 4 3 2 1 0
  1 0 1 1 1 1 1
构造矩阵  矩阵快速幂
 /******************************
code by drizzle
blog: www.cnblogs.com/hsd-/
^ ^ ^ ^
O O
******************************/
#include<bits/stdc++.h>
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<bitset>
#include<math.h>
#include<vector>
#include<string>
#include<stdio.h>
#include<cstring>
#include<iostream>
#include<algorithm>
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
#define A first
#define B second
const int mod=;
const int MOD1=;
const int MOD2=;
const double EPS=0.00000001;
typedef __int64 ll;
const ll MOD=;
const int INF=;
const ll MAX=1ll<<;
const double eps=1e-;
const double inf=~0u>>;
const double pi=acos(-1.0);
typedef double db;
typedef unsigned int uint;
typedef unsigned long long ull;
const ll k=;
struct matrix
{
ll m[][];
} ans,exm;
struct matrix matrix_mulit1(struct matrix aa,struct matrix bb)
{
struct matrix there;
for(int i=;i<;i++)
{
for(int j=;j<;j++)
{
there.m[i][j]=;
for(int u=;u<;u++)
there.m[i][j]=(there.m[i][j]+aa.m[i][u]*bb.m[u][j]%k)%k;
}
}
return there;
}
struct matrix matrix_mulit2(struct matrix aa,struct matrix bb)
{
struct matrix there;
for(int j=;j<;j++)
{
there.m[][j]=;
for(int u=;u<;u++)
there.m[][j]=(there.m[][j]+aa.m[][u]*bb.m[u][j]%k)%k;
}
return there;
}
ll matrix_quick(ll aa,ll bb,ll gg)
{
exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;
exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;
exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;
exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;
exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;
exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;
exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;exm.m[][]=;
ans.m[][]=bb;ans.m[][]=aa;ans.m[][]=;ans.m[][]=;ans.m[][]=;ans.m[][]=;ans.m[][]=;
gg-=;
while(gg)
{
if(gg&)
ans=matrix_mulit2(ans,exm);
exm=matrix_mulit1(exm,exm);
gg >>= ;
}
return ans.m[][];
}
int t;
ll n,a,b;
int main()
{
scanf("%d",&t);
for(int i=;i<=t;i++)
{
scanf("%I64d %I64d %I64d",&n,&a,&b);
if(n==)
printf("%I64d\n",a);
else if(n==)
printf("%I64d\n",b);
else
printf("%I64d\n",(matrix_quick(a, b, n)+k)%k);
}
return ;
}

HDU 5950 矩阵快速幂的更多相关文章

  1. HDU 2855 (矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855 题目大意:求$S(n)=\sum_{k=0}^{n}C_{n}^{k}Fibonacci(k)$ ...

  2. HDU 4471 矩阵快速幂 Homework

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4471 解题思路,矩阵快速幂····特殊点特殊处理····· 令h为计算某个数最多须知前h个数,于是写 ...

  3. HDU - 1575——矩阵快速幂问题

    HDU - 1575 题目: A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973.  Input数据的第一行是一个T,表示有T组数据. 每组数据的第一行有n( ...

  4. hdu 1757 (矩阵快速幂) 一个简单的问题 一个简单的开始

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 题意不难理解,当x小于10的时候,数列f(x)=x,当x大于等于10的时候f(x) = a0 * ...

  5. 随手练——HDU 5015 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5015 看到这个限时,我就知道这题不简单~~矩阵快速幂,找递推关系 我们假设第一列为: 23 a1 a2 ...

  6. HDU 3802 矩阵快速幂 化简递推式子 加一点点二次剩余知识

    求$G(a,b,n,p) = (a^{\frac {p-1}{2}}+1)(b^{\frac{p-1}{2}}+1)[(\sqrt{a} + \sqrt{b})^{2F_n} + (\sqrt{a} ...

  7. How many ways?? HDU - 2157 矩阵快速幂

    题目描述 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的 ...

  8. hdu 1757 矩阵快速幂 **

    一看正确率这么高,以为是水题可以爽一发,结果是没怎么用过的矩阵快速幂,233 题解链接:点我 #include<iostream> #include<cstring> ; us ...

  9. HDU 4686 矩阵快速幂 Arc of Dream

    由式子的性质发现都是线性的,考虑构造矩阵,先有式子,a[i] = ax * a[i-1] + ay; b[i] = bx*b[i-1] +by; a[i]*b[i] = ax*bx*a[i-1]*b[ ...

随机推荐

  1. PHP操作MySQL的常用函数

    某些情况下(如html中),调用php的变量时,要给变量加{},若要使字符串变量加上引号,则还需要在{}外加引号 如: $sql="select * from admin where use ...

  2. Linux进程基础

    Linux进程基础   作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 计算机实际上可以做的事情实质上非常简单,比如计算两个数的和 ...

  3. Tomcat 配置 默认应用 (去掉项目名称、移除项目名称)

    Tomcat 配置默认应用,即只输入域名或ip,不用输入项目名称: <Host name="localhost" appBase="webapps" un ...

  4. 关于xcode不同版本打开相同工程问题

    今天刚下好了xcode7正式版,于是乎用其创建一个工程.随后关闭此工程用xcode6.3打开此工程.发现报错不能运行,随后网上查资料,可惜中文版的资料几乎可以说是没有,因此写下此文,以方便其他遇到此情 ...

  5. Linux 监控文件被什么进程修改

    安装: apt-get install auditd. auditd 是后台守护进程,负责监控记录 auditctl 配置规则的工具 auditsearch 搜索查看 aureport 根据监控记录生 ...

  6. Shell 语法之结构化命令(流程控制)

    许多程序在脚本命令之间需要某种逻辑流控制,允许脚本根据变量值的条件或者其他命令的结果路过一些命令或者循环执行这些命令.这些命令通常被称为结构化命令.和其他高级程序设计语言一样,shell提供了用来控制 ...

  7. CBUUID UUIDString unrecognized selector sent to instance 错误

    CBUUID UUIDString unrecognized selector sent to instance 错误 ios7.0,4s 蓝牙出现上述错误! 查看api可知,错误原因,由于CBUUI ...

  8. zoj 2833 friendship

    zoj 2833这次真的很顺利了..居然是因为数组的大小没有符合要求,瞎折腾了很久..没有注意到要求范围,真是该死! 想法很简单,就是定义一个父结点数组,下标 i 表示这个元素,初始化为 -1表示 这 ...

  9. winform客户端程序第一次调用webservice方法很慢的解决方法

    .net2.0的winform客户端最常用的与服务端通信方式是通过webservice,最近在用dottrace对客户端做性能测试的时候发现,客户端程序启动以后,第一次调用某一个webservice的 ...

  10. NOIP2014感想

    NOIP2014转眼就结束了,让人不由感慨时间之快,仿佛几天前还是暑假,几天后就已经坐在考场里了. 从暑假8月开始写博客,发了一些解题报告什么的,但这篇文章不再会是“题目大意 & 解题过程 & ...