Large Margin DAGs for Multiclass Classification
Abstract
We present a new learning architecture: the Decision Directed Acyclic Graph (DDAG), which is used to combine many two-class classifiers into a multiclass classifiers. For an
1 Introduction
The problem of multiclass classification, especially for systems like SVMs, doesn't present an easy solution. It is generally simpler to construct classifier theory and algorithms for two mutually-exclusive classes than for
The standard method for
Another method for constructing
Knerr suggested combining these two-class classifiers with an “AND” gate. Friedman suggested a Max Wins algorithm: each
A significant disadvantage of the
2 Decision DAGs
A Directed Acyclic Graph (DAG) is a graph whose edges have an orientation and no cycles. A Rooted DAG has a unique node such that it is the only node which has no arcs pointing into it. A Rooted Binary DAG has nodes which have either
Definition 1Decision DAGs (DDAGs). Given a space
To evaluate a particular DDAG G on input evaluation path. The input
The DDAG is equivalent to operating on a list, where each node eliminates one class from the list. The list is initialized with a list of all classes. A test point is evaluated against the decision node that corresponds to the first and last elements of the list. If the node prefers one of the two classes, the other class is eliminated from the list, and the DDAG proceeds to test the first and last elements of the new list. The DDAG terminates when only one class remains in the list. Thus, for a problem with
The current state of the list is the total state of the system. Therefore, since a list state is reachable in more than one possible path through the system, the decision graph the algorithm traverses is a DAG, not simply a tree.
Decision DAGs naturally generalize the class of Decision Trees, allowing for a more efficient representation of redundancies and repetitions that can occur in different branches of the tree, by allowing the merging of different decision paths. The class of functions implemented is the same as that of Generalized Decision Trees, but this particular representation presents both computational and learning-theoretical advantages.
3 Analysis of Generalization
In this paper we study DDAGs where the node-classifiers are hyperplanes. We define a Perceptron DDAG to be a DDAG with a perceptron at every node. Let
Theorem 1 Suppose we are able to classifya random
where
Theorem 1 implies that we can control the capacity of DDAGs by enlarging their margin. Note that, in some situations, this bound may be pessimistic: the DDAG partitions the input space into polytopic regions, each of which is mapped to a leaf node and assigned to a specific class. Intuitively, the only margins that should matter are the ones relative to the boundaries of the cell where a given training point is assigned, whereas the bound in Theorem 1 depends on all the margins in the graph.
By the above observations, we would expect that a DDAG whose
Theorem 2 Suppose we are able to correctly distinguish class
where
Large Margin DAGs for Multiclass Classification的更多相关文章
- Micro Average vs Macro average Performance in a Multiclass classification setting
整理摘自 https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performanc ...
- Andrew Ng机器学习 三:Multi-class Classification and Neural Networks
背景:识别手写数字,给一组数据集ex3data1.mat,,每个样例都为灰度化为20*20像素,也就是每个样例的维度为400,加载这组数据后,我们会有5000*400的矩阵X(5000个样例),会有5 ...
- 基于Caffe的Large Margin Softmax Loss的实现(中)
小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文: http://www.miao ...
- 基于Caffe的Large Margin Softmax Loss的实现(上)
小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L- ...
- Multiclass Classification
之前我们都是在Binary classification的基础上学习算法和知识. 如何使用Binary classification算法进行Multiclass classification呢? (一 ...
- [DeeplearningAI笔记]Multi-class classification多类别分类Softmax regression_02_3.8-3.9
Multi-class classification多类别分类 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.8 Softmax regression 原有课程我们主要介绍的是二分分类( ...
- Multi-class Classification相关
标签(空格分隔): 毕业论文 (OS: 最近在做关于多类分类的综述,但是搜索出来好多方向搞得自己云里雾里的,好吧,又是在下孤陋寡闻了.还是那句话,不知道不可怕,但一直不知道就很尴尬了.) one-cl ...
- Andrew Ng机器学习编程作业:Multi-class Classification and Neural Networks
作业文件 machine-learning-ex3 1. 多类分类(Multi-class Classification) 在这一部分练习,我们将会使用逻辑回归和神经网络两种方法来识别手写体数字0到9 ...
- Large Margin Softmax Loss for Speaker Verification
[INTERSPEECH 2019接收] 链接:https://arxiv.org/pdf/1904.03479.pdf 这篇文章在会议的speaker session中.本文主要讨论了说话人验证中的 ...
随机推荐
- web应用动态文档技术
动态生成web文档分为服务器动态生成.客户端动态生成 服务器动态生成文档技术主要有: CGI - 公共网关接口,它是一个允许Web服务器与后端程序以及脚本进行通信的标准化接口.通常是web服务器收到一 ...
- MFC编程入门之二十一(常用控件:编辑框Edit Control)
上一节讲了静态文本框,本节讲的是编辑框(Edit Control)同样是一种很常用的控件,我们可以在编辑框中输入并编辑文本.在前面加法计算器的例子中已经演示了编辑框的基本应用.下面具体讲解编辑框的使用 ...
- mysql mybatis-generator plugin 有page实体类的分页
page实体类 package cn.zsmy.tmp; import java.io.Serializable; /** * 分页对象. * */public final class Page im ...
- easyui layout 布局title
<script> function aclick(){ $("a").click(function () { var name=this.innerHTML; $($( ...
- Perl--学习记录(实时更新)
标量变量(varibale)以美元符号($)开头,这个符号也成为魔符(sigil).Perl通过魔符来区分它是什么类型的变量. Perl里面大部分变量名称习惯使用全小写.而使用全大写的(比如$ARGV ...
- 命令查看DB restore进度
SELECT DB_NAME(er.[database_id]) [DatabaseName],er.[session_id] AS [SessionID],er.[command] AS [Comm ...
- console
你所不知道的 Console 2016-12-19 ZHANGXIANGLIANG JavaScript 转自 https://segmentfault.com/a/119000000672160 1 ...
- z-index深入理解
[CSS深入理解之z-index]听课总结 (http://www.imooc.com/learn/643) 一.z-index基础知识 1.z-index的含义 z-index属性指定了元素及其 ...
- 关于meta元信息元素
HTML头部<meta>标记通过属性定义文件的名称.内容.关键词.作者.描述等多种信息,但是只能在源代码中显示,页面上无法显示出来.此标签可以在头部有多个. A.设置页面关键词 基本语法: ...
- (C# & Unity) 脚本语言 ES
C# 编写,解释执行,语法类似 JS,动态类型,支持闭包,支持热更新,效率比较低,目前暂时没有发现 BUG,实际游戏运行稳定,没有发现内存泄漏 Github:https://github.com/ea ...