Abstract

We present a new learning architecture: the Decision Directed Acyclic Graph (DDAG), which is used to combine many two-class classifiers into a multiclass classifiers. For an

  1. 1 Introduction

The problem of multiclass classification, especially for systems like SVMs, doesn't present an easy solution. It is generally simpler to construct classifier theory and algorithms for two mutually-exclusive classes than for

The standard method for

Another method for constructing

Knerr suggested combining these two-class classifiers with an “AND” gate. Friedman suggested a Max Wins algorithm: each

A significant disadvantage of the

  1. 2 Decision DAGs

A Directed Acyclic Graph (DAG) is a graph whose edges have an orientation and no cycles. A Rooted DAG has a unique node such that it is the only node which has no arcs pointing into it. A Rooted Binary DAG has nodes which have either

Definition 1Decision DAGs (DDAGs). Given a space

To evaluate a particular DDAG G on input evaluation path. The input

The DDAG is equivalent to operating on a list, where each node eliminates one class from the list. The list is initialized with a list of all classes. A test point is evaluated against the decision node that corresponds to the first and last elements of the list. If the node prefers one of the two classes, the other class is eliminated from the list, and the DDAG proceeds to test the first and last elements of the new list. The DDAG terminates when only one class remains in the list. Thus, for a problem with

The current state of the list is the total state of the system. Therefore, since a list state is reachable in more than one possible path through the system, the decision graph the algorithm traverses is a DAG, not simply a tree.

Decision DAGs naturally generalize the class of Decision Trees, allowing for a more efficient representation of redundancies and repetitions that can occur in different branches of the tree, by allowing the merging of different decision paths. The class of functions implemented is the same as that of Generalized Decision Trees, but this particular representation presents both computational and learning-theoretical advantages.

3 Analysis of Generalization

In this paper we study DDAGs where the node-classifiers are hyperplanes. We define a Perceptron DDAG to be a DDAG with a perceptron at every node. Let

Theorem 1 Suppose we are able to classifya random

where

Theorem 1 implies that we can control the capacity of DDAGs by enlarging their margin. Note that, in some situations, this bound may be pessimistic: the DDAG partitions the input space into polytopic regions, each of which is mapped to a leaf node and assigned to a specific class. Intuitively, the only margins that should matter are the ones relative to the boundaries of the cell where a given training point is assigned, whereas the bound in Theorem 1 depends on all the margins in the graph.

By the above observations, we would expect that a DDAG whose

Theorem 2 Suppose we are able to correctly distinguish class

where

Large Margin DAGs for Multiclass Classification的更多相关文章

  1. Micro Average vs Macro average Performance in a Multiclass classification setting

    整理摘自 https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performanc ...

  2. Andrew Ng机器学习 三:Multi-class Classification and Neural Networks

    背景:识别手写数字,给一组数据集ex3data1.mat,,每个样例都为灰度化为20*20像素,也就是每个样例的维度为400,加载这组数据后,我们会有5000*400的矩阵X(5000个样例),会有5 ...

  3. 基于Caffe的Large Margin Softmax Loss的实现(中)

    小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文:  http://www.miao ...

  4. 基于Caffe的Large Margin Softmax Loss的实现(上)

    小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L- ...

  5. Multiclass Classification

    之前我们都是在Binary classification的基础上学习算法和知识. 如何使用Binary classification算法进行Multiclass classification呢? (一 ...

  6. [DeeplearningAI笔记]Multi-class classification多类别分类Softmax regression_02_3.8-3.9

    Multi-class classification多类别分类 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.8 Softmax regression 原有课程我们主要介绍的是二分分类( ...

  7. Multi-class Classification相关

    标签(空格分隔): 毕业论文 (OS: 最近在做关于多类分类的综述,但是搜索出来好多方向搞得自己云里雾里的,好吧,又是在下孤陋寡闻了.还是那句话,不知道不可怕,但一直不知道就很尴尬了.) one-cl ...

  8. Andrew Ng机器学习编程作业:Multi-class Classification and Neural Networks

    作业文件 machine-learning-ex3 1. 多类分类(Multi-class Classification) 在这一部分练习,我们将会使用逻辑回归和神经网络两种方法来识别手写体数字0到9 ...

  9. Large Margin Softmax Loss for Speaker Verification

    [INTERSPEECH 2019接收] 链接:https://arxiv.org/pdf/1904.03479.pdf 这篇文章在会议的speaker session中.本文主要讨论了说话人验证中的 ...

随机推荐

  1. 线性表-双向链表(LinkedList)

    双向链表:如图1-3 所示,会把当前header拆分开,重新插入一个Entry<E>. LinkedList源码 0.首先这个类中的两个变量 private transient Entry ...

  2. opencv vs环境配置

    1.新建环境变量 OPENCV = D:\Programss\opencv\build 2.%OPENCV%\x86\vc12\bin;加入Path环境变量 3.导入 VS属性表文件 cv2413.p ...

  3. Evolutionary Computing: multi-objective optimisation

    1. What is multi-objective optimisation [wikipedia]: Multi-objective optimization (also known as mul ...

  4. Java类中中文问题

    一个奇怪问题 java类中要保存一个xml文件到数据库,2种传值方式其中1种不知何故会最终导致解析xml时报错. xml文件内容由StringBuffer定义,其中一段内容如下: sb.append( ...

  5. 配置sublime text 3 的Python开发环境

    为了在sublime实现像Python自带idle一样的F5交互功能: 首先安装package control然后install Sublime REPL:然后配置 Preference-->P ...

  6. mac 安装php7

    卸载php55 brew unlink php55 brew install homebrew/php/php70 安装成功信息 To enable PHP in Apache add the fol ...

  7. maven + eclipse + tomcat热部署

    环境:eclipse  + tomcat  + maven + m2eclipse 解决这种问题有两种方案(方案二更好用,不想看方案一的人可以直接绕过). 方案一: 第一种方案摘自http://blo ...

  8. svn: Can't convert string from 'UTF-8' to native encoding 的解决办法(转)

    http://www.cnblogs.com/xuxm2007/archive/2010/10/26/1861223.html svn 版本库中有文件是以中文字符命名的,在 Linux 下 check ...

  9. 读javascript高级程序设计00-目录

    javascript高级编程读书笔记系列,也是本砖头书.感觉js是一种很好上手的语言,不过本书细细读来发现了很多之前不了解的细节,受益良多.<br/>本笔记是为了方便日后查阅,仅作学习交流 ...

  10. java selenium (十三) 智能等待页面加载完成

    我们经常会碰到用selenium操作页面上某个元素的时候, 需要等待页面加载完成后, 才能操作.  否则页面上的元素不存在,会抛出异常. 或者碰到AJAX异步加载,我们需要等待元素加载完成后, 才能操 ...