Large Margin DAGs for Multiclass Classification
Abstract
We present a new learning architecture: the Decision Directed Acyclic Graph (DDAG), which is used to combine many two-class classifiers into a multiclass classifiers. For an
1 Introduction
The problem of multiclass classification, especially for systems like SVMs, doesn't present an easy solution. It is generally simpler to construct classifier theory and algorithms for two mutually-exclusive classes than for
The standard method for
Another method for constructing
Knerr suggested combining these two-class classifiers with an “AND” gate. Friedman suggested a Max Wins algorithm: each
A significant disadvantage of the
2 Decision DAGs
A Directed Acyclic Graph (DAG) is a graph whose edges have an orientation and no cycles. A Rooted DAG has a unique node such that it is the only node which has no arcs pointing into it. A Rooted Binary DAG has nodes which have either
Definition 1Decision DAGs (DDAGs). Given a space
To evaluate a particular DDAG G on input evaluation path. The input
The DDAG is equivalent to operating on a list, where each node eliminates one class from the list. The list is initialized with a list of all classes. A test point is evaluated against the decision node that corresponds to the first and last elements of the list. If the node prefers one of the two classes, the other class is eliminated from the list, and the DDAG proceeds to test the first and last elements of the new list. The DDAG terminates when only one class remains in the list. Thus, for a problem with
The current state of the list is the total state of the system. Therefore, since a list state is reachable in more than one possible path through the system, the decision graph the algorithm traverses is a DAG, not simply a tree.
Decision DAGs naturally generalize the class of Decision Trees, allowing for a more efficient representation of redundancies and repetitions that can occur in different branches of the tree, by allowing the merging of different decision paths. The class of functions implemented is the same as that of Generalized Decision Trees, but this particular representation presents both computational and learning-theoretical advantages.
3 Analysis of Generalization
In this paper we study DDAGs where the node-classifiers are hyperplanes. We define a Perceptron DDAG to be a DDAG with a perceptron at every node. Let
Theorem 1 Suppose we are able to classifya random
where
Theorem 1 implies that we can control the capacity of DDAGs by enlarging their margin. Note that, in some situations, this bound may be pessimistic: the DDAG partitions the input space into polytopic regions, each of which is mapped to a leaf node and assigned to a specific class. Intuitively, the only margins that should matter are the ones relative to the boundaries of the cell where a given training point is assigned, whereas the bound in Theorem 1 depends on all the margins in the graph.
By the above observations, we would expect that a DDAG whose
Theorem 2 Suppose we are able to correctly distinguish class
where
Large Margin DAGs for Multiclass Classification的更多相关文章
- Micro Average vs Macro average Performance in a Multiclass classification setting
整理摘自 https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performanc ...
- Andrew Ng机器学习 三:Multi-class Classification and Neural Networks
背景:识别手写数字,给一组数据集ex3data1.mat,,每个样例都为灰度化为20*20像素,也就是每个样例的维度为400,加载这组数据后,我们会有5000*400的矩阵X(5000个样例),会有5 ...
- 基于Caffe的Large Margin Softmax Loss的实现(中)
小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文: http://www.miao ...
- 基于Caffe的Large Margin Softmax Loss的实现(上)
小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L- ...
- Multiclass Classification
之前我们都是在Binary classification的基础上学习算法和知识. 如何使用Binary classification算法进行Multiclass classification呢? (一 ...
- [DeeplearningAI笔记]Multi-class classification多类别分类Softmax regression_02_3.8-3.9
Multi-class classification多类别分类 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.8 Softmax regression 原有课程我们主要介绍的是二分分类( ...
- Multi-class Classification相关
标签(空格分隔): 毕业论文 (OS: 最近在做关于多类分类的综述,但是搜索出来好多方向搞得自己云里雾里的,好吧,又是在下孤陋寡闻了.还是那句话,不知道不可怕,但一直不知道就很尴尬了.) one-cl ...
- Andrew Ng机器学习编程作业:Multi-class Classification and Neural Networks
作业文件 machine-learning-ex3 1. 多类分类(Multi-class Classification) 在这一部分练习,我们将会使用逻辑回归和神经网络两种方法来识别手写体数字0到9 ...
- Large Margin Softmax Loss for Speaker Verification
[INTERSPEECH 2019接收] 链接:https://arxiv.org/pdf/1904.03479.pdf 这篇文章在会议的speaker session中.本文主要讨论了说话人验证中的 ...
随机推荐
- Js Map 实现
/* * MAP对象,实现MAP功能 * * 接口: * size() 获取MAP元素个数 * isEmpty() 判断MAP是否为空 * clear() 删除MAP所有元素 * put(key, v ...
- 当shiro做成动态URL管理时出现循环注入BeanCurrentlyInCreationException的问题解决方法
<!-- Shiro的Web过滤器 --> <bean id="shiroFilter" class="org.apache.shiro.spring. ...
- Michael Schatz - 序列比对课程
Michael Schatz - Cold Spring Harbor Laboratory 最近在研究 BWA mem 序列比对算法,直接去看论文,看不懂,论文就3页,太精简了,好多背景知识都不了解 ...
- openssl stack 数据结构栈基本操作
堆栈是两种不同的数据结构: 堆:数据先进先出: 栈:数据先进后观: 在stack.h 中 openssl 为我们提供了一个通用的栈,利用提供的接口我们可以方便的用此栈来存放开发中的任意数据. open ...
- 利用反射调用方法时,处理ref,out参数需要注意的问题(转)
转自:http://www.68idc.cn/help/buildlang/ask/20150318283817.html 项目中如下的泛型方法,因为要在运行时,动态指定类型参数,所以要利用反射来实现 ...
- curl上传图片文件
为了优化网站,需要做静态化和,图片分离 暂时想到的方式是: 1,php//input 流方式上传到远程服务器 2,阿里云oss收费服务 3,curl上传图片 4,phpftp上传图片 5, 服务器同 ...
- jq异步上传文件(转载)
最近在使用ajaxForm,随便把使用方法记下下来,以便以后回顾. 1 ,引入依赖脚本 <script type="text/JavaScript" src="/j ...
- ajax基础1
AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML). AJAX 是与服务器交换数据并更新部分网页的艺术,在不重新加载整个页面的情况 ...
- Discuz! X3搬家后UCenter出现UCenter info: MySQL Query Error解决方案
Discuz! X3 X2.5论坛搬家后 登录UCenter出现报错:UCenter info: MySQL Query ErrorSQL:SELECT value FROM [Table]vars ...
- MySQL使用技巧收集,持续更新中......
1.查询时按某一内容为中文的字段,以拼音字母排序: SELECT * FROM game ORDER BY CONVERT(name USING GBK);