dfs序就是一棵树在dfs遍历时组成的节点序列.

它有这样一个特点:一棵子树的dfs序是一个区间.
下面是dfs序的基本代码:
void dfs(int x,int pre,int d){//L,R表示一个子树的范围
L[x]=++tot;
dep[x]=d;
for(int i=;i<e[x].size();i++){
int y=e[x][i];
if(y==pre)continue;
dfs(y,x,d+);
}
R[x]=tot;
}

给定一颗树, 和每个节点的权值.下面有7个经典的关于dfs序的问题:

1. 对某个节点X权值加上一个数W, 查询某个子树X里所有点权的和.

由于X的子树在DFS序中是连续的一段, 只需要维护一个dfs序列,用树状数组实现:单点修改和区间查询.

2. 对节点X到Y的最短路上所有点权都加一个数W, 查询某个点的权值.
这个操作等价于a. 对X到根节点路径上所有点权加W
b. 对Y到根节点路径上所有点权加W
c. 对LCA(x, y)到根节点路径上所有点权值减W
d. 对LCA(x,y)的父节点 fa(LCA(x, y))到根节点路径上所有权值减W

于是要进行四次这样从一个点到根节点的区间修改.将问题进一步简化, 进行一个点X到根节点的区间修改, 查询其他一点Y时,只有X在Y的子树内, X对Y的值才有贡献且贡献值为W.当单点更新X时,X实现了对X到根的路径上所有点贡献了W.于是只需要更新四个点(单点更新) ,查询一个点的子树内所有点权的和(区间求和)即可.

3. 对节点X到Y的最短路上所有点权都加一个数W, 查询某个点子树的权值之和.
同问题2中的修改方法, 转化为修改某点到根节点的权值加/减W
当修改某个节点A, 查询另一节点B时
只有A在B的子树内, Y的值会增加
W * (dep[A] - dep[B] + 1) => W * (dep [A] + 1) - W * dep[B]
那么我们处理两个数组就可以实现:
处理出数组Sum1,每次更新W*(dep[A]+1),和数组Sum2,每次更新W.
每次查询结果为Sum1(R[B]) – Sum1(L[B]-1) - (Sum2(R[B]) – Sum2(L[B]-1)) * dep [B].

4. 对某个点X权值加上一个数W, 查询X到Y路径上所有点权之和.
求X到Y路径上所有的点权之和, 和前面X到Y路径上所有点权加一个数相似
这个问题转化为
X到根节点的和 + Y到根节点的和 - LCA(x, y)到根节点的和 - fa(LCA(x,y)) 到根节点的和
更新某个点x的权值时,只会对它的子树产生影响,对x的子树的每个点到根的距离都加了W.
那么我们用”刷漆”(差分前缀和),更新一个子树的权值.给L[x]加上W,给R[x]+1减去W,那么sum(1~L[k])就是k到根的路径点权和.

5. 对节点X的子树所有节点加上一个值W, 查询X到Y的路径上所有点的权值和
同问题4把路径上求和转化为四个点到根节点的和
X到根节点的和 + Y到根节点的和 - LCA(x, y)到根节点的和 - parent(LCA(x,y)) 到根节点的
再用刷漆只更新子树.
修改一点A, 查询某点B到根节点时, 只有B在A的子树内, A对B才有贡献.
贡献为W * (dep[B] - dep[A] + 1) => W * (1 - dep[A]) + W * dep[B]
和第三题一样, 用两个sum1,sum2维护 W *(dep[A] + 1),和W.
最后答案就是sum2*dep[B]-sum1.

6. 对子树X里所有节点加上一个值W, 查询某个点的值.
对DFS序来说, 子树内所有节点加W, 就是一段区间加W.
所以这个问题就是 区间修改, 单点查询.树状数组+刷漆.

7.对子树X里所有节点加上一个值W, 查询某个子树的权值和.
子树所有节点加W, 就是某段区间加W, 查询某个子树的权值和, 就是查询某段区间的和
区间修改区间求和,用线段树可以很好解决.

 
 

DFS序详解的更多相关文章

  1. JS-排序详解:冒泡排序、选择排序和快速排序

    JS-排序详解-冒泡排序 说明 时间复杂度指的是一个算法执行所耗费的时间 空间复杂度指运行完一个程序所需内存的大小 稳定指,如果a=b,a在b的前面,排序后a仍然在b的前面 不稳定指,如果a=b,a在 ...

  2. JS-排序详解-冒泡排序

    说明 时间复杂度指的是一个算法执行所耗费的时间 空间复杂度指运行完一个程序所需内存的大小 稳定指,如果a=b,a在b的前面,排序后a仍然在b的前面 不稳定指,如果a=b,a在b的前面,排序后可能会交换 ...

  3. JS-排序详解-选择排序

    说明 时间复杂度指的是一个算法执行所耗费的时间 空间复杂度指运行完一个程序所需内存的大小 稳定指,如果a=b,a在b的前面,排序后a仍然在b的前面 不稳定指,如果a=b,a在b的前面,排序后可能会交换 ...

  4. JS-排序详解-快速排序

    说明 时间复杂度指的是一个算法执行所耗费的时间 空间复杂度指运行完一个程序所需内存的大小 稳定指,如果a=b,a在b的前面,排序后a仍然在b的前面 不稳定指,如果a=b,a在b的前面,排序后可能会交换 ...

  5. Hadoop(四)HDFS集群详解

    前言 前面几篇简单介绍了什么是大数据和Hadoop,也说了怎么搭建最简单的伪分布式和全分布式的hadoop集群.接下来这篇我详细的分享一下HDFS. HDFS前言: 设计思想:(分而治之)将大文件.大 ...

  6. adoop(四)HDFS集群详解

    阅读目录(Content) 一.HDFS概述 1.1.HDFS概述 1.2.HDFS的概念和特性 1.3.HDFS的局限性 1.4.HDFS保证可靠性的措施 二.HDFS基本概念 2.1.HDFS主从 ...

  7. dfs序+RMQ求LCA详解

    首先安利自己倍增求LCA的博客,前置(算不上)知识在此. LCA有3种求法:倍增求lca(上面qwq),树链剖分求lca(什么时候会了树链剖分再说.),还有,标题. 是的你也来和我一起学习这个了qwq ...

  8. 图文详解两种算法:深度优先遍历(DFS)和广度优先遍历(BFS)

    参考网址:图文详解两种算法:深度优先遍历(DFS)和广度优先遍历(BFS) - 51CTO.COM 深度优先遍历(Depth First Search, 简称 DFS) 与广度优先遍历(Breath ...

  9. 【转】logback 常用配置详解(序)logback 简介

    原创文章,转载请指明出处:http://aub.iteye.com/blog/1101222, 尊重他人即尊重自己 详细整理了logback常用配置, 不是官网手册的翻译版,而是使用总结,旨在更快更透 ...

随机推荐

  1. JavaScript Cookies

    JavaScript Cookies 当 web 服务器向浏览器发送 web 页面时,在连接关闭后,服务端不会记录用户的信息.Cookies 的作用就是用于存储 web 页面的用户信息. Cookie ...

  2. js键盘事件

    弱鸡今天在写键盘事件,发生一个小bug,排查了1小时(">皿<)可恶的浏览器竟然还不报错!!原因是将e.ctrlKey写成了e.ctrLKey,o(゚Д゚)っ 想想都要生气< ...

  3. PHP 关于SQL注入的防范措施。

    最近在使用框架的时候还是有点不安,不知道框架的设计者有没有考虑到SQL-Injection的问题,我在顶层需不需要做一些必要的过滤等等,由 此我特意的去StackOverflow看了下,真是获益良多, ...

  4. js⑧

    window对象表示浏览器中打开的窗口, 它是JavaScript浏览器对象模型中的顶层对象.其中还包括了 - Document: 使我们可以从脚本中对 HTML 页面中的所有元素进行访问. - Hi ...

  5. 探索javascript----拖拽

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  6. the king of fighter

    wim 学习部分摘自coolshell http://coolshell.cn/articles/5426.html 基本式 i → Insert 模式,按 ESC 回到 Normal 模式. x → ...

  7. 利用Ajax+MSMQ(消息队列)+WebService实现服务器端向客户端的信息推送

    需求: 每当数据库有数据更新时,推送到客户端 软需求: 1.服务器资源有限,要求资源占用尽可能小: 2.项目可控,不许调用第三方不可信不稳定的方法. 已有事例: 1.58到家采用的方法是TCP的长连接 ...

  8. ListView——android菜鸟成长之路

    ListView的基本用法 建博客这么久了,一直没能写点什么,其实一直想写来着,却又无从下手,今天终于下定决心写点什么,好吧,就ListView吧,这个控件是个搞基控件,所以初学者都会觉得很难,于是乎 ...

  9. JUnit4参数的使用

    用JUnit4进行参数化测试 参数化测试是一个JUnit 3不具备的功能. 基本使用方法 @RunWith 当类被@RunWith注解修饰,或者类继承了一个被该注解修饰的类,JUnit将会使用这个注解 ...

  10. Spring面向切面之AOP深入探讨

    Spring之AOP深入探讨 刚接触AOP之前我已经找了网上各种博客论坛上的关于AOP的文章利于我理解因为听好多人说AOP很复杂,很深奥当我接触之后发现根本不是那么的难于理解.它只是一个基于OOP技术 ...