P3523 POI2011 DYN-Dynamite
P3523 POI2011 DYN-Dynamite
小 trick,加双倍经验。
思路
使 \(dis\) 的最大值最小,可以想到二分 \(dis\),然后根据 \(dis\) 判断可行性。
那么可以把问题转化为,所有关键点到选择的点的距离小于 \(dis\) 的前提下,使得使用的点的个数最小。
这就是:P3942 将军令
考虑设 \(f[u]\) 为距离 \(u\) 最近的选中的点的距离,\(g[u]\) 为距离 \(u\) 最远的未被覆盖的关键点的距离。
这里覆盖指:对于一个关键点,到最近的被选中点的距离小于等于当前二分的 \(dis\)。
有朴素转移:
\]
\]
然后要分讨一下(下文中的 \(mid\) 为二分的距离):
当 \(f[u]>mid\) 且 \(u\) 为关键点。
\(g[u]=max(g[u],0)\)。
解释:显而易见,当前点可以作为一个没有被覆盖的关键点。
当 \(g[u]+f[u]\leq mid\)。
\(g[u]=-\infty\)。
解释:显然没有一个没被覆盖的关键点,易证 \(g[u]\) 和 \(f[u]\) 不来自一棵子树。
当 \(g[u]=mid\)。
\(g[u]=-\infty,f[u]=0\) 且需选择的点个数加一。
解释:该点必须被选择。
最后判断一下根的 \(g[u]\) 是否大于 \(0\),如果大于 \(0\) 在加一个选中的点。
然后套上二分就 OK 了。
CODE
#include<bits/stdc++.h>
using namespace std;
const int maxn=3e5+5;
struct Edge
{
int tot;
int head[maxn];
struct edgenode{int to,nxt;}edge[maxn*2];
inline void add(int x,int y)
{
tot++;
edge[tot].to=y;
edge[tot].nxt=head[x];
head[x]=tot;
}
}T;
int n,m;
int a[maxn];
int g[maxn],f[maxn];
int gs;
inline void dfs(int u,int fa,int mid)
{
g[u]=-1e9,f[u]=1e9;
for(int i=T.head[u];i;i=T.edge[i].nxt)
{
int v=T.edge[i].to;
if(v==fa) continue;
dfs(v,u,mid);
f[u]=min(f[v]+1,f[u]);
g[u]=max(g[v]+1,g[u]);
}
if(f[u]>mid&&a[u]) g[u]=max(g[u],0);
if(f[u]+g[u]<=mid) g[u]=-1e9;
if(g[u]==mid) f[u]=0,g[u]=-1e9,gs++;
}
inline void solve(int mid)
{
gs=0;
dfs(1,0,mid);
gs+=(g[1]>=0);
printf("%d",gs);
}
int main()
{
int t;
scanf("%d%d%d",&n,&m,&t);
for(int i=1;i<=n;i++) a[i]=1;
for(int i=1;i<n;i++)
{
int u,v;
scanf("%d%d",&u,&v);
T.add(u,v),T.add(v,u);
}
solve(m);
}
P3523 POI2011 DYN-Dynamite的更多相关文章
- 10月清北学堂培训 Day 6
今天是黄致焕老师的讲授~ T1 自信 AC 莫名 80 pts???我还是太菜了!! 对于每种颜色求出该颜色的四个边界,之后枚举边界构成的矩阵中每个元素,如果不等于该颜色就标记那种颜色不能最先使用. ...
- 【BZOJ2525】[Poi2011]Dynamite 二分+树形DP
[BZOJ2525][Poi2011]Dynamite Description Byteotian Cave的结构是一棵N个节点的树,其中某些点上面已经安置了炸.药,现在需要点燃M个点上的引线引爆所有 ...
- bzoj 2525 [Poi2011]Dynamite 二分+树形dp
[Poi2011]Dynamite Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 270 Solved: 138[Submit][Status][D ...
- 【BZOJ2525】[Poi2011]Dynamite(二分,树形dp)
[BZOJ2525][Poi2011]Dynamite Description Byteotian Cave的结构是一棵N个节点的树,其中某些点上面已经安置了炸.药,现在需要点燃M个点上的引线引爆所有 ...
- Bzoj 2525 [Poi2011]Dynamite
2525: [Poi2011]Dynamite Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 240 Solved: 120[Submit][Sta ...
- BZOJ 2525 Poi2011 Dynamite 二分答案+树形贪心
题目大意:给定一棵树,有一些点是关键点,要求选择不超过mm个点.使得全部关键点到近期的选择的点距离最大值最小 二分答案,问题转化为: 给定一棵树,有一些点是关键点,要求选择最少的点使得每一个关键点到选 ...
- BZOJ2525 [Poi2011]Dynamite 【二分 + 贪心】
题目链接 BZOJ2525 题解 就是要求所有有炸弹的点到点燃点距离最大值最小 显然二分答案距离\(D\) 然后按深度排序,贪心点燃当前没覆盖的深度最深的点往上第\(D\)层的点 每覆盖一个点要标记其 ...
- bzoj 2525: [Poi2011]Dynamite【二分+树上贪心】
一眼二分.然后重点是树上贪心部分 长得像dp一样,设mn为子树内已炸点的最浅点,mx为子树内没有炸并且需要炸的最深点,然后转移直接从子树继承即可 然后是判断当前u点是否需要炸,当mx[u]+mn[u] ...
- POI2011题解
POI2011题解 2214先咕一会... [BZOJ2212][POI2011]Tree Rotations 线段树合并模板题. #include<cstdio> #include< ...
- BZOJ2527: [Poi2011]Meteors
补一发题解.. 整体二分这个东西,一开始感觉复杂度不是很靠谱的样子 问了po姐姐,说套主定理硬干.. #include<bits/stdc++.h> #define ll long lon ...
随机推荐
- CentOS 7 yum无法使用解决方法Could not retrieve mirrorlist http://mirrorlist.centos.org/?release=7&arch=
在centos7中使用yum命令时候报错: Loading mirror speeds from cached hostfile Could not retrieve mirrorlist http: ...
- .NET 8.0 前后分离快速开发框架
前言 大家好,推荐一个.NET 8.0 为核心,结合前端 Vue 框架,实现了前后端完全分离的设计理念.它不仅提供了强大的基础功能支持,如权限管理.代码生成器等,还通过采用主流技术和最佳实践,显著降低 ...
- C++ STL vector 性能之push_back、emplace_back、reserve
#include <iostream> #include <vector> #include <chrono> using namespace std; const ...
- 痞子衡嵌入式:在MDK开发环境下自定义安装与切换不同编译器版本的方法
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是在MDK开发环境下自定义安装与切换不同编译器版本的方法. Keil MDK 想必是嵌入式开发者最熟悉的工具之一了,自 2005 年 Ar ...
- 小tips:...运算符(展开运算符、剩余操作符)
如下例子: 1. var set = new Set([1, 2, 3, 4, 4,4,4,4,2,2,2]) set=[...set] 2. let [head, ...tail] = [1, 2, ...
- C语言实现面向对象方法学的GLib、GObject-初体验
0. 扫盲: GLib是用C写的一些utilities,即C的工具库,和libc/glibc(GNU C Library)没有关系. GLib是 Gtk+ 库和 Gnome 的基础.GLib可以在多个 ...
- Linux服务器磁盘空间占用情况分析与清理指南
为确保重大节日期间,团队负责的测试环境服务器磁盘不会占用过高,导致频繁报警.我们要求在重大节假日前对服务器磁盘占用情况进行检查.如果发现占用过高,则需人为介入,进行相应清理. 一.检查要求 查看各分区 ...
- 彻底解决 user.config 文件损坏
症状见 发生 Configuration system failed to initialize 错误的一个特例 解决的办法,在去读 user.settings 之前捕获错误,比如 Main() 里面 ...
- 支付宝 APP登录 获取用户信息 PHP(转)
转载自:https://blog.csdn.net/wang78699425/article/details/78666401 支付宝 APP登录 获取用户信息 PHP(转) 支付宝APP登录服务端流 ...
- USB configfs与USB functionfs的区别及关系
configfs 和 functionfs 是 Linux 内核中用于配置和管理 USB 设备行为的两种不同的文件系统,它们各自的用途和工作方式有所不同,但在 USB Gadget 子系统中可以结合使 ...