首先这道题理论上是可以做到O(nlogn)的,因为OEIS上有一个明显可以用多项式乘法加速的式子

但是由于模数不是很兹磁,所以导致nlogn很难写

在这里说一下O(n*sqrt(n))的做法

首先我们很容易发现当物品的大小>sqrt(n)的时候,物品数量的限制形同虚设

也就是说物品的大小>sqrt(n)的时候实际上是一个完全背包

而对于完全背包,有着另外一种做法(参照NOIP2001 数的划分)

由于我们知道假设我们只用>sqrt(n)的物品,我们最多使用sqrt(n)个物品

不妨设f[i][j]表示用了i个>sqrt(n)的物品拼出来j的方案

我们分类讨论:

1、这i个物品中至少有一个是sqrt(n)+1

2、这i个物品都>sqrt(n)+1

可以很容易得到递推式f[i][j]=f[i][j-i]+f[i-1][j-sqrt(n)-1]

由于最多用sqrt(n)个物品,所以状态数是n*sqrt(n)的,转移是O(1)的

所以这部分的时间复杂度是O(n*sqrt(n))的

之后我们考虑只用<=sqrt(n)的情况

这显然是一个简单的多重背包问题了

我们都知道多重背包问题的时间复杂度是O(物品数量*背包大小)

所以时间复杂度是O(n*sqrt(n))

之后把合并两种情况就可以了,时间复杂度O(n*sqrt(n))

好啦,这道题的上半部分几乎是NOIP2001 数的划分

下半部分是裸的多重背包

所以整体是NOIP难度,而我在做51Nod的时候并没有想出来

所以我的水平低于NOIP

证毕QAQ

顺便一提的是,最后合并的式子是一个卷积形式

51Nod 有限背包计数问题 题解报告的更多相关文章

  1. 题解 51nod 1597 有限背包计数问题

    题目传送门 题目大意 给出 \(n\),第 \(i\) 个数有 \(i\) 个,问凑出 \(n\) 的方案数. \(n\le 10^5\) 思路 呜呜呜,傻掉了... 首先想到根号分治,分别考虑 \( ...

  2. 51nod 1597 有限背包计数问题 (背包 分块)

    题意 题目链接 Sol 不会做啊AAA.. 暴力上肯定是不行的,考虑根号分组 设\(m = \sqrt{n}\) 对于前\(m\)个直接暴力,利用单调队列优化多重背包的思想,按\(\% i\)分组一下 ...

  3. 51Nod1957 有限背包计数问题

    传送门 另一个传送门 这题还挺有意思…… 先贴一波出题人的题解…… (啥你说你看不见?看来你还没过啊,等着A了再看或者乖乖花点头盾好了……) 然后是我的做法……思想都是一样的,只是细节不一样而已…… ...

  4. [51nod1597]有限背包计数问题

    你有一个大小为n的背包,你有n种物品,第i种物品的大小为i,且有i个,求装满这个背包的方案数有多少 两种方案不同当且仅当存在至少一个数i满足第i种物品使用的数量不同 Input 第一行一个正整数n 1 ...

  5. 2018.09.25 51nod1597 有限背包计数问题(背包+前缀和优化)

    传送门 dp好题. 我认为原题的描述已经很清楚了: 你有一个大小为n的背包,你有n种物品,第i种物品的大小为i,且有i个,求装满这个背包的方案数有多少. 两种方案不同当且仅当存在至少一个数i满足第i种 ...

  6. cojs 二分图计数问题1-3 题解报告

    OwO 良心的FFT练手题,包含了所有的多项式基本运算呢 其中一部分解法参考了myy的uoj的blog 二分图计数 1: 实际是求所有图的二分图染色方案和 我们不妨枚举这个图中有多少个黑点 在n个点中 ...

  7. 【LOJ6089】小Y的背包计数问题(动态规划)

    [LOJ6089]小Y的背包计数问题(动态规划) 题面 LOJ 题解 神仙题啊. 我们分开考虑不同的物品,按照编号与\(\sqrt n\)的关系分类. 第一类:\(i\le \sqrt n\) 即需要 ...

  8. 题解报告:hdu 1028 Ignatius and the Princess III(母函数or计数DP)

    Problem Description "Well, it seems the first problem is too easy. I will let you know how fool ...

  9. 2015浙江财经大学ACM有奖周赛(一) 题解报告

    2015浙江财经大学ACM有奖周赛(一) 题解报告 命题:丽丽&&黑鸡 这是命题者原话. 题目涉及的知识面比较广泛,有深度优先搜索.广度优先搜索.数学题.几何题.贪心算法.枚举.二进制 ...

随机推荐

  1. js设计模式(4)---组合模式

    0.前言 今天是建党节,新疆那边又开始了闹腾.作为立志成为码农的我,现在已经从一个大愤青淡化为一个小愤青,对这些国家民生大事不在血气喷发,转而把经历发泄在技术问题上面,因而在扯一篇随笔吧,把无处发泄的 ...

  2. NaN 和 Infinity

    using Fasterflect; using System; using System.Collections.Generic; using System.Linq; using System.R ...

  3. 初识NoSQL 快速认识NoSQL数据库 分析Analytics For Hackers: How To Think About Event Data

    做了一年的大一年度项目了,对于关系型数据库结构还是有些了解了,有的时候还是觉得这种二维表不是很顺手.在看过一篇文章之后,对NoSQL有了初步的了解,(https://keen.io/blog/5395 ...

  4. Operating Cisco Router

    Operating Cisco Router consider the hardware on the ends of the serial link, in particular where the ...

  5. C#实现发送邮件——核心部分代码

    在KS系统中有个发送邮件的功能需要做上网查阅资料以后,通过自己的部分修改实现了发送邮件的功能话不多说先来个界面: 邮件发送分一下步骤: 1.smtp服务信息设置 2.验证发件人信息 3.添加附件 4. ...

  6. 从零开始学ios开发(六):IOS控件(3),Segmented Control、Switch

    这次的学习还是基于上一个项目继续进行(你也可以新建一个项目)学习Segmented Control和Switch. Segmented Control Switch Segmented Control ...

  7. JqueryMoblie 之 loading

    显示“正在加载........”等字样,并且带有加载图片的显示. //显示加载器function showLoader() { $.mobile.loading('show', { text: '正在 ...

  8. Interview-Harry Potter walk through matrix.

    假设你是harry potter,在grid的左上角,你现在要走到右下角,grid中有正数也有负数,遇到正数表示你的strength增加那么多,遇到负数表示strength减少那么多,在任何时刻如果你 ...

  9. UI控件tag属性和魔法数字的处理

    说明:tag属性有很大的用处,它就好像每个UI控件的id,当多个按钮指向同一个监听方法时,可以给方法带参数UIButton,然后根据不同的tag值 来判断执行哪个按钮的监听事件: - (IBActio ...

  10. WWDC 2016: Rich Notifications in iOS 10

    Notifications have gotten more than a visual refresh in iOS 10. As part of the new UserNotifications ...