1.             作业调度方案

(jsp.pas/c/cpp)

【问题描述】

我们现在要利用m台机器加工n个工件,每个工件都有m道工序,每道工序都在不同的指定的机器上完成。每个工件的每道工序都有指定的加工时间。

每个工件的每个工序称为一个操作,我们用记号j-k表示一个操作,其中j为1到n中的某个数字,为工件号;k为1到m中的某个数字,为工序号,例如2-4表示第2个工件第4道工序

的这个操作。在本题中,我们还给定对于各操作的一个安排顺序。

例如,当 n=3,m=2 时,“1-1,1-2,2-1,3-1,3-2,2-2”就是一个给定的安排顺序,

即先安排第1个工件的第1个工序,再安排第1个工件的第2个工序,然后再安排第2个工件的第1个工序,等等。

一方面,每个操作的安排都要满足以下的两个约束条件。

(1)    对同一个工件,每道工序必须在它前面的工序完成后才能开始;

(2)    同一时刻每一台机器至多只能加工一个工件。

另一方面,在安排后面的操作时,不能改动前面已安排的操作的工作状态。

由于同一工件都是按工序的顺序安排的,因此,只按原顺序给出工件号,仍可得到同样的安排顺序,于是,在输入数据中,我们将这个安排顺序简写为“1 1 2 3 3 2”。

还要注意,“安排顺序”只要求按照给定的顺序安排每个操作。不一定是各机器上的实际操作

顺序。在具体实施时,有可能排在后面的某个操作比前面的某个操作先完成。

例如,取n=3,m=2,已知数据如下:

工件号

机器号/加工时间

工序1

工序2

1

1/3

2/2

2

1/2

2/5

3

2/2

1/4

则对于安排顺序“1 1 2 3 3 2”,下图中的两个实施方案都是正确的。但所需要的总时间分别是

10与12。

当一个操作插入到某台机器的某个空档时(机器上最后的尚未安排操作的部分也可以看作一个空档),可以靠前插入,也可以靠后或居中插入。为了使问题简单一些,我们约定:在保证约束条

件(1)(2)的条件下,尽量靠前插入。并且,我们还约定,如果有多个空档可以插入,就在保证

约束条件(1)(2)的条件下,插入到最前面的一个空档。于是,在这些约定下,上例中的方案一是正确的,而方案二是不正确的。

显然,在这些约定下,对于给定的安排顺序,符合该安排顺序的实施方案是唯一的,请你计算

出该方案完成全部任务所需的总时间。

【输入文件】

输入文件jsp.in 的第1行为两个正整数,用一个空格隔开:m n

(其中m(<20)表示机器数,n(<20)表示工件数)第2行:mn个用空格隔开的数,为给定的安排顺序。

接下来的2n行,每行都是用空格隔开的m个正整数,每个数不超过20。

其中前n行依次表示每个工件的每个工序所使用的机器号,第1个数为第1个工序的机器号,第2个数为第2个工序机器号,等等。

后n行依次表示每个工件的每个工序的加工时间。

可以保证,以上各数据都是正确的,不必检验。

【输出文件】

输出文件jsp.out只有一个正整数,为最少的加工时间。

【输入输出样例】

jsp.in

jsp.out

2 3

1 1 2 3 3 2

1 2

1     2

2     1

3     2

2 5

2 4

10

【思路】

模拟。

有简单可行的思路不要想麻烦的,比赛的时候比的是正确性,不TLE就行。用一个X数组标记不可行的区域,对一个安排好的工序标记的时候不标记端点。

被一个数组范围卡了好几个小时,一个二维数组开小了,出现了莫名赋值的情况。在检查算法正确也一定要看一下自己的数据大小。

【代码】

 #include<iostream>
#include<cstring>
using namespace std;
const int maxn = +;
int len[maxn][maxn],toM[maxn][maxn];
int list[maxn*maxn];
int last[maxn]; //第一道工序出现的最后位置
int cnt[maxn];
int X[maxn][]; //数组开小了
//数组开小以后会出现十分奇妙的赋值情况
int n,m,ans=; inline bool check(int to,int s,int t) {
for(int i=s;i<=t;i++) if(X[to][i]) return false; //have a black
return true; //all is white
} int main() {
ios::sync_with_stdio(false);
cin>>m>>n;
for(int i=;i<=m*n;i++) cin>>list[i];
for(int i=;i<=n;i++) for(int j=;j<=m;j++) cin>>toM[i][j];
for(int i=;i<=n;i++) for(int j=;j<=m;j++) cin>>len[i][j]; for(int i=;i<=m*n;i++) {
int u=list[i] ,p=last[u] , tmp=++cnt[u] , to=toM[u][tmp];
while(!check(to,p,p+len[u][tmp])) p++; //寻找可插入的左端点
int L=p,R=len[u][tmp]+p;
for(int j=L+;j<R;j++) X[to][j]=; //(L,R)<-1 //标记(不包括端点)
ans=max(ans,R);
last[u]=R; //记录u工件出现的最右点 下次安排u从这里开始
} cout<<ans;
return ;
}

NOIP2006 作业调度方案的更多相关文章

  1. 题解 【NOIP2006】作业调度方案

    [NOIP2006]作业调度方案 Description 我们现在要利用 m 台机器加工 n 个工件,每个工件都有 m 道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工序都有指定的加工时间 ...

  2. 洛谷P1065 作业调度方案

    P1065 作业调度方案 题目描述 我们现在要利用m台机器加工n个工件,每个工件都有m道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工序都有指定的加工时间. 每个工件的每个工序称为一个操作 ...

  3. 洛谷 P1065 作业调度方案

    P1065 作业调度方案 题目描述 我们现在要利用 mm 台机器加工 nn 个工件,每个工件都有 mm 道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工序都有指定的加工时间. 每个工件的每 ...

  4. P1065 作业调度方案——小模怡情,大模伤身

    P1065 作业调度方案 一个有点费手的“小”%%拟: 题都差点没读明白……: 每个机器所能完成的工序是不一样的: 每个物品完成工序的机器是指定的: 按照题面说的按时间轴推下去就行了: 没有时间上界有 ...

  5. 【NOIP2006】作业调度方案 {语文难题}

    Description: 我们现在要利用 m 台机器加工 n 个工件,每个工件都有 m 道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工序都有指定的加工时间.  每个工件的每个工序称为一个 ...

  6. [NOIP2006] 提高组 洛谷P1065 作业调度方案

    题目描述 我们现在要利用m台机器加工n个工件,每个工件都有m道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工序都有指定的加工时间. 每个工件的每个工序称为一个操作,我们用记号j-k表示一个 ...

  7. [洛谷] P1065 [NOIP2006 提高组] 作业调度方案

    点击查看代码 #include<bits/stdc++.h> using namespace std; const int N = 1e6 + 10; int m, n, ans = 0; ...

  8. NOIp 2006 作业调度方案 Label:坑 模拟(tyvj你不给我ac,我就把名字献给附中oj)

    福建师大附中链接:http://218.5.5.242:9018/JudgeOnline/problem.php?id=1211 [问题描述] 我们现在要利用m台机器加工n个工件,每个工件都有m道工序 ...

  9. NOIP 2006 作业调度方案

    [问题描述] 我们现在要利用m台机器加工n个工件,每个工件都有m道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工序都有指定的加工时间. 每个工件的每个工序称为一个操作,我们用记号j-k表示 ...

随机推荐

  1. c++ 链接

    header.h #ifndef HEADER_H #define HEADER_H unsigned long getFac(unsigned short num); ; #endif // HEA ...

  2. 团体程序设计天梯赛-练习集L1-001. Hello World

    L1-001. Hello World 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 这道超级简单的题目没有任何输入. 你只需要在一行中输 ...

  3. URAL 1260 Nudnik Photographer(递推)

    题目链接 题意 : 给你1到n这n个数,排成一排,然后1放在左边最开始,剩下的数进行排列,要求排列出来的数列必须满足任何两个相邻的数之间的差不能超过2,问你有多少种排列 思路 : 对于dp[n], n ...

  4. 【BZOJ 1045】 1045: [HAOI2008] 糖果传递

    1045: [HAOI2008] 糖果传递 Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正整数n& ...

  5. [矩阵快速幂]HDOJ4565 So Easy!

    题意:给a, b, n, m 求 $\left \lceil ( a+ \sqrt b )^n \right \rceil$ % m 看到 $( a+ \sqrt b )^n$ 虽然很好联想到共轭 但 ...

  6. Java中List的排序

    第一种方法,就是list中对象实现Comparable接口,代码如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2 ...

  7. knowledge about apache

    http://wenku.baidu.com/link?url=6O51BQJdtFRFWDGszKfN3aK7IY92QTCpuc7miBhRLazXvxL5gXb18B_TqIdi3EruX1o_ ...

  8. 8款替代Dreamweaver的开源网页开发工具

    Adobe Dreamweaver虽然非常好用,但它并不是唯一一个能够设计.开发.发布精彩网站的Web开发集成环境.我们的开源世界里有很多非常棒的可以完全替代Dreamweaver的各种功能的优秀We ...

  9. 关于rewriteRule的一个小问题

    RewriteEngine on # RewriteRule ^test.php$ modrewrite.php# RewriteRule ^(.*) http://www.baidu.com [L] ...

  10. C#.Net 如何动态加载与卸载程序集(.dll或者.exe)4-----Net下的AppDomain编程 [摘录]

    最近在对AppDomain编程时遇到了一个问题,卸载AppDomain后,在内存中还保留它加载的DLL的数据,所以即使卸载掉AppDomain,还是无法更新它加载的DLL.看来只有关闭整个进程来更新D ...