Title:

https://leetcode.com/problems/unique-paths/

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

思路:直观的思路是使用递归,但是会超时

class Solution{
public:
int m;
int n;
int uniquePaths(int m, int n) {
this->m = m;
this->n = n;
int sum = ;
fun(,,sum);
return sum;
}
void fun(int i,int j,int& sum){
if (i == m && j == n)
sum++;
if (i > m || j > n)
return ;
fun(i+,j,sum);
fun(i,j+,sum);
}
};
int uniquePaths(int m,int n){
if (m == || n == )
return ;
return uniquePaths(m-,n)+uniquePaths(m,n-);
}

一般这种递归都可以使用动态规划来解决

class Solution{
public:
int uniquePaths(int m,int n){
if (m < || n < )
return ;
vector<int> v(n,);
for (int i = ; i < m ; i++)
for (int j = ; j < n;j++){
v[j] += v[j-];
}
return v[n-];
}
};

Unique Path II

https://leetcode.com/problems/unique-paths-ii/

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

开始想直接使用I中的,却没有考虑到边界上有障碍的情况

int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid){
if (obstacleGrid.empty())
return ;
int m = obstacleGrid.size();
int n = obstacleGrid[].size();
if (m < || n < )
return ;
vector<int> result(n);
result[] = ;
for (int i = ; i < m ; i++){
for (int j = ; j < n ; j++){
if (obstacleGrid[i][j] == )
result[j] = ;
else{
if (j > )
result[j] += result[j-];
}
}
}
return result[n-];
}

Minimun-Path-Sum

Title:

https://leetcode.com/problems/minimum-path-sum/

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

思路:同样的动态规划

class Solution{
public:
int minPathSum(vector<vector<int> > &grid){
if (grid.empty() || grid.size() == )
return ;
int m = grid.size();
int n = grid[].size();
vector<int> v(n,INT_MAX);
v[] = ;
for (int i = ; i < m; i++){
for (int j = ; j < n; j++){
if (j == ){
v[j] = v[j] + grid[i][j];
}else{
v[j] = min(v[j],v[j-]) + grid[i][j];
}
//cout<<v[j]<<" ";
}
//cout<<endl;
}
//cout<<endl;
return v[n-];
}
};

LeetCode: Unique Paths I & II & Minimum Path Sum的更多相关文章

  1. [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )

    Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...

  2. LeetCode 64. 最小路径和(Minimum Path Sum) 20

    64. 最小路径和 64. Minimum Path Sum 题目描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明: 每次只能向下或 ...

  3. 【Leetcode】【Medium】Minimum Path Sum

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  4. LeetCode:Unique Paths I II

    Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagra ...

  5. 【LeetCode每天一题】Minimum Path Sum(最短路径和)

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  6. LeetCode 113. 路径总和 II(Path Sum II)

    题目描述 给定一个二叉树和一个目标和,找到所有从根节点到叶子节点路径总和等于给定目标和的路径. 说明: 叶子节点是指没有子节点的节点. 示例: 给定如下二叉树,以及目标和 sum = 22, 5 / ...

  7. leetcode 64. 最小路径和Minimum Path Sum

    很典型的动态规划题目 C++解法一:空间复杂度n2 class Solution { public: int minPathSum(vector<vector<int>>&am ...

  8. [LeetCode] Unique Paths 不同的路径

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  9. 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance

    引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...

随机推荐

  1. 【BZOJ】【1013】【JSOI2008】球形空间产生器sphere

    高斯消元 高斯消元模板题 /************************************************************** Problem: 1013 User: Tun ...

  2. Matlab中mat2cell的使用

    怎样用mat2cell将一个100*100的矩阵分成10个10*100的矩阵? 根据帮助中 c = mat2cell(x,m,n)应该这样写 mat2cell(x,[10 10 10 10 10 10 ...

  3. linux cmake 安装mysql5.5.11,以及更高版本

    1.下载mysql5.5.12和cmake wget http://mirrors.sohu.com/mysql/MySQL-5.5/mysql-5.5.12-linux2.6-i686.tar.gz ...

  4. POJ 3228 Gold Transportation(带权并查集,好题)

    参考链接:http://www.cnblogs.com/jiaohuang/archive/2010/11/13/1876418.html 题意:地图上某些点有金子,有些点有房子,还有一些带权路径,问 ...

  5. MessageBox.Show()如何换行

    MessageBox.Show("你好!\n\r可以使用", "换行");

  6. Java中转UTC时间字符串(含有T Z)为local时间

    在Java中我们需要转换相应格式的字符串,很多时候我们想到用SimpleDateFormat类来解析.但是最近我在调用一个第三方的接口时返回的 JSON字符串中有个expires字段的值是2014-0 ...

  7. 关于fisher判别的一点理解

    最近一个朋友问这方面的一些问题,其实之前也就很粗略的看了下fisher,真正帮别人解答问题的时候才知道原来自己也有很多东西不懂.下面小结下自己对fisher判别的理解: 其实fisher和PCA差不多 ...

  8. vlc/ffmepg/mplayer/gstreamer/openmax/mpc/ffdshow/directshow

    一些应该学习的开源框架与库用途和差别 一.播放器层次 这个层次上,是直接可以用的软件,已经做完了一切工作,如果我们需要用他们,是不需要写一行代码的,编译通过就可以拿来使用了,对于国内这些山寨公司来说, ...

  9. MFC中快速应用OpenCV教程

    论坛上看到非常经典的VS2008 + OpenCV 2.0下的配置过程: (这里用的是opencv2.0) 1. 文件 | 项目 | MFC | MFC应用程序 |(新名称如MFCtest)|next ...

  10. class_create()

    #define class_create(owner, name)               \({                                              \   ...