算法的时间复杂度(大O表示法)
定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。
当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。
我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。
此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。
“大O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。
这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。
O(1)
Temp=i;i=j;j=temp;
以上三条单个语句的频度均为1,该程序段的执行时间是一个与问 题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时 间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。
O(n^2)
2.1. 交换i和j的内容
sum=0; (一次)
for(i=1;i<=n;i++) (n次 )
for(j=1;j<=n;j++) (n^2次 )
sum++; (n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)
2.2.
for (i=1;i<n;i++)
{
y=y+1; ①
for (j=0;j<=(2*n);j++)
x++; ②
}
解: 语句1的频度是n-1
语句2的频度是(n-1)*(2n+1)=2n^2-n-1
f(n)=2n^2-n-1+(n-1)=2n^2-2
该程序的时间复杂度T(n)=O(n^2).
O(n)
2.3.
a=0;
b=1; ①
for (i=1;i<=n;i++) ②
{
s=a+b; ③
b=a; ④
a=s; ⑤
}
解: 语句1的频度:2,
语句2的频度: n,
语句3的频度: n-1,
语句4的频度:n-1,
语句5的频度:n-1,
T(n)=2+n+3(n-1)=4n-1=O(n).
O(log2n )
2.4.
i=1; ①
while (i<=n)
i=i*2; ②
解: 语句1的频度是1,
设语句2的频度是f(n), 则:2^f(n)<=n;f(n)<=log2n
取最大值f(n)= log2n,
T(n)=O(log2n )
O(n^3)
2.5.
for(i=0;i<n;i++)
{
for(j=0;j<i;j++)
{
for(k=0;k<j;k++)
x=x+2;
}
}
解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).
我们还应该区分算法的最坏情况的行为和期望行为。如快速排序的 最 坏情况运行时间是 O(n^2),但期望时间是 O(nlogn)。通过每次都仔细 地选择基准值,我们有可能把平方情况 (即O(n^2)情况)的概率减小到几乎等于 0。在实际中,精心实现的快速排序一般都能以 (O(nlogn)时间运行。
访问数组中的元素是常数时间操作,或说O(1)操作。一个算法 如 果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(logn)时间。用strcmp比较两个具有n个字符的串需要O(n)时间 。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对 元素相乘并加到一起,所有元素的个数是n^2。
指数时间算法通常来源于需要求出所有可能结果。例如,n个元 素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的 。指数算法一般说来是太复杂了,除非n的值非常小,因为,在 这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如著名 的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况, 通常应该用寻找近似最佳结果的算法替代之。
算法的时间复杂度(大O表示法)的更多相关文章
- 算法的时间复杂度——"大O分析法"(转载)
原文地址:https://my.oschina.net/gooke/blog/684026 一下为本人笔记:) 场景:在解决计算机科学领域的问题时,经常有好多个方法都可以,想找到最优的方法,就有了时间 ...
- 习题一初步理解时间复杂度大O表示法案例
1.如果 a+b+c=1000,且 a^2+b^2=c^2(a,b,c 为自然数),如何求出所有a.b.c可能的组合? 如上:a+b+c=1000, a平方+b平方=c平方 求出所有abc可能的组合 ...
- 算法图解之大O表示法
什么是大O表示法 大O表示法可以告诉我们算法的快慢. 大O比较的是操作数,它指出了算法运行时间的增速. O(n) 括号里的是操作数. 举例 画一个16个格子的网格,下面分别列举几种不同的画法,并用大O ...
- 重拾算法之复杂度分析(大O表示法)
.katex { display: block; text-align: center; white-space: nowrap; } .katex-display > .katex > ...
- C#中常用的排序算法的时间复杂度和空间复杂度
常用的排序算法的时间复杂度和空间复杂度 常用的排序算法的时间复杂度和空间复杂度 排序法 最差时间分析 平均时间复杂度 稳定度 空间复杂度 冒泡排序 O(n2) O(n2) 稳定 O(1) 快速排序 ...
- python数据结构与算法学习自修第二天【时间复杂度与大O表示法】
#!/usr/bin/env python #! _*_ coding:UTF-8 _*_ from Queue import Queue import time que = Queue() time ...
- 算法时间复杂度、空间复杂度(大O表示法)
什么是算法? 计算机是人的大脑的延伸,它的存在主要是为了帮助我们解决问题. 而算法在计算机领域中就是为了解决问题而指定的一系列简单的指令集合.不同的算法需要不同的资源,例如:执行时间或消耗内存. 如果 ...
- 白话算法:时间复杂度和大O表示法
转自:https://www.jianshu.com/p/59d09b9cee58 每一个优秀的开发者脑中都有时间概念.他们想给用户更多的时间让用户做他们想做的事情.他们通过最小化时间复杂度来实现这一 ...
- 常见算法的时间复杂度(大O计数法)
定义 对于不同的机器环境而言,确切的单位时间是不同的,但是对于算法进行多少个基本操作(即花费多少时间单位)在规模数量级上却是相同的,由此可以忽略机器环境的影响而客观的反应算法的时间效率. 对于算法 ...
随机推荐
- 【WS-Federation】到底有多少公司在用WS-Federation
到底有多少公司在用WS-Federation? sso先调用一个登录接口 获取一个token 然后再调用各种业务接口 如果是ssl token 直接暴露就行了 没有ssl 最好每次取一个token, ...
- POJ 2411 压缩状态DP
这个题目非常赞! 给定一个矩形,要求用1*2 的格子进行覆盖,有多少种覆盖方法呢? dp[i][j] 当状态为j,且第i行已经完全铺满的情况下的种类数有多少种?j中1表示占了,0表示没有被占. 很显然 ...
- python学习笔记19(序列的方法)
序列包含有宝值 表(tuple)和表(list).此外,字符串(string)是一种特殊的定值表,表的元素可以更改,定值表一旦建立,其元素不可更改. 任何的序列都可以引用其中的元素(item). 下面 ...
- 【分块】bzoj3343: 教主的魔法
3343: 教主的魔法 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 631 Solved: 272[Submit][Status][Discuss ...
- Spark中shuffle的触发和调度
Spark中的shuffle是在干嘛? Shuffle在Spark中即是把父RDD中的KV对按照Key重新分区,从而得到一个新的RDD.也就是说原本同属于父RDD同一个分区的数据需要进入到子RDD的不 ...
- android下调试unity3d应用
原地址:http://blog.csdn.net/armoonwei/article/details/7032455 目前貌似不支持断点调试,但可以通过日志打印(logcat)来跟踪. 在androi ...
- Titan DB的一些问题
使用熟悉一点的系统来测试TitanDB,HBASE+ES,记录下来一些小tips. 1.首先TitanDB支持的Hadoop只有1.2.1,所以Hbase自然也只能取到0.98,虽然官网上提供了tit ...
- Maven Source jar
http://blog.csdn.net/symgdwyh/article/details/4407945
- [itint5]下一个排列
http://www.itint5.com/oj/#6 首先,试验的时候要拿5个来试,3,4个都太少了.好久没做所以方法也忘了,是先从后往前找到第一个不合顺序的,然后在后面找到比这个大的最小的来交换, ...
- Android:时间控件
1.选择时间TimePicker 监听器:OnTimeChangedListener(obj,int hour,int minute); 常用: 获取时:getCurrentHour(). 获取 ...