题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6025

Coprime Sequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)

Total Submission(s): 666    Accepted Submission(s): 336

Problem Description
Do you know what is called ``Coprime Sequence''? That is a sequence consists of n positive
integers, and the GCD (Greatest Common Divisor) of them is equal to 1.

``Coprime Sequence'' is easy to find because of its restriction. But we can try to maximize the GCD of these integers by removing exactly one integer. Now given a sequence, please maximize the GCD of its elements.
 
Input
The first line of the input contains an integer T(1≤T≤10),
denoting the number of test cases.

In each test case, there is an integer n(3≤n≤100000) in
the first line, denoting the number of integers in the sequence.

Then the following line consists of n integers a1,a2,...,an(1≤ai≤109),
denoting the elements in the sequence.
 
Output
For each test case, print a single line containing a single integer, denoting the maximum GCD.
 
Sample Input
3
3
1 1 1
5
2 2 2 3 2
4
1 2 4 8
 
Sample Output
1
2
2
 

题解:

l[i]为前i个数的gcd, r[i]为后i个数的gcd。

假设被删除的数的下标为i, 则 删除该数后的gcd为: gcd(l[i-1], r[i+1]), 枚举i,取最大值。

学习之处:

当提到在序列里删除一段连续的数时,可以用前缀和+后缀和

例如:http://blog.csdn.net/dolfamingo/article/details/71001021

代码如下:

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const double eps = 1e-6;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+7;
const int maxn = 1e5+10; int n;
int a[maxn], l[maxn], r[maxn]; int gcd(int a, int b)
{
return b==0?a:(gcd(b,a%b));
} void solve()
{
scanf("%d",&n);
for(int i = 1; i<=n; i++)
scanf("%d",&a[i]); l[1] = a[1]; r[n] = a[n];
for(int i = 2; i<=n; i++)
l[i] = gcd(l[i-1], a[i]);
for(int i = n-1; i>=1; i--)
r[i] = gcd(r[i+1], a[i]); int ans = 1;
l[0] = a[2]; r[n+1] = a[n-1];
for(int i = 1; i<=n; i++)
ans = max(ans, gcd(l[i-1], r[i+1]) );
cout<<ans<<endl;
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
solve();
}
return 0;
}

HDU6025 Coprime Sequence —— 前缀和 & 后缀和的更多相关文章

  1. HDU6025 Coprime Sequence(gcd)

    HDU6025 Coprime Sequence 处理出数列的 \(gcd\) 前缀和后缀,删除一个数后的 \(gcd\) 为其前缀和后缀的 \(gcd\) . 遍历数列取 \(max\) 即为答案. ...

  2. Coprime Sequence(前后缀GCD)

    Description Do you know what is called ``Coprime Sequence''? That is a sequence consists of $n$ posi ...

  3. HDU - 6025 Coprime Sequence(gcd+前缀后缀)

    Do you know what is called ``Coprime Sequence''? That is a sequence consists of nnpositive integers, ...

  4. HDU - 6025 Coprime Sequence(前缀gcd+后缀gcd)

    题意:去除数列中的一个数字,使去除后数列中所有数字的gcd尽可能大. 分析:这个题所谓的Coprime Sequence,就是个例子而已嘛,题目中没有任何语句说明给定的数列所有数字gcd一定为1→_→ ...

  5. HDU6205 Coprime Sequence 2017-05-07 18:56 36人阅读 评论(0) 收藏

    Coprime Sequence                                                        Time Limit: 2000/1000 MS (Ja ...

  6. 递归算法(二)——前缀转后缀

    源码:pretopost.cpp #include "stdafx.h" #include <stdio.h> #include <stack> /**** ...

  7. POJ 2752 Seek the Name, Seek the Fame (KMP的next函数,求前缀和后缀的匹配长度)

    给一个字符串S,求出所有前缀,使得这个前缀也正好是S的后缀.升序输出所有情况前缀的长度.KMP中的next[i]的意义就是:前面长度为i的子串的前缀和后缀的最大匹配长度.明白了next[i],那么这道 ...

  8. 【Todo】字符串相关的各种算法,以及用到的各种数据结构,包括前缀树后缀树等各种树

    另开一文分析字符串相关的各种算法,以及用到的各种数据结构,包括前缀树后缀树等各种树. 先来一个汇总, 算法: 本文中提到的字符串匹配算法有:KMP, BM, Horspool, Sunday, BF, ...

  9. 关于字符串 “*****AB**C*D*****” 中前缀、后缀和中间 '*' 的处理

    一.删除前缀 '*' #include<iostream> #include<cstdio> using namespace std; //主函数 int main() { ] ...

随机推荐

  1. 洛谷—— P1847 轰炸II

    https://www.luogu.org/problemnew/show/1847 题目背景 本题为轰炸数据加强版 题目描述 一个城市遭到了M次轰炸,每次都炸了一个每条边都与边界平行的矩形 在轰炸后 ...

  2. java 发送微信客服消息

    package com.baosight.wechat.service; import net.sf.json.JSONObject; import org.apache.commons.httpcl ...

  3. Web文件的ContentType类型大全

    ".*"="application/octet-stream"".001"="application/x-001"&qu ...

  4. HDU1532_Drainage Ditches(网络流/EK模板/Dinic模板(邻接矩阵/前向星))

    Drainage Ditches Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  5. python(36)- 测试题

    1.8<<2等于? 32 “<<”位运算 264 132 64 32 16 8 4 2 1 原始位置 0 0 0 0 0 1 0 0 0 想左位移2位 0 0 0 1 0 0 ...

  6. 【转载】ViewState的用法

    本文导读:在web窗体控件设置为runat = "server",这个控件会被附加一个隐藏的属性_ViewState,_ViewState存放了所有控件在ViewState中的状态 ...

  7. 手写JQuery 的框架的实现

    JQuery的好处 快速上手(学习成本低) 开发效率高(选择器.批量操作 DOM.链型操作--) 一系列的封装(动画.ajax) 浏览器兼容(1.x版本 兼容IE6.7.8) JQuery 1.11. ...

  8. Kuebernetes之DaemonSet

    系列目录 DaemonSet确保集群中每个(部分)node运行一份pod副本,当node加入集群时创建pod,当node离开集群时回收pod.如果删除DaemonSet,其创建的所有pod也被删除,D ...

  9. kubernetes的Service Account和secret

    系列目录 Service Account Service Account概念的引入是基于这样的使用场景:运行在pod里的进程需要调用Kubernetes API以及非Kubernetes API的其它 ...

  10. C语言malloc

    在子函数里面动态申请的内存不会自动被系统收回的,因为这些空间在堆里面,而不是栈,平常所说的不能返回指向栈的指针,比如在子函数里面定义一个字符指针,指向常量"hello"因为函数调用 ...