引例:NYOJ16

矩形嵌套

时间限制:3000 ms  |           内存限制:65535 KB
难度:4
 
描述
有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。

 
输入
第一行是一个正正数N(0<N<10),表示测试数据组数,
每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=1000)
随后的n行,每行有两个数a,b(0<a,b<100),表示矩形的长和宽
输出
每组测试数据都输出一个数,表示最多符合条件的矩形数目,每组输出占一行
样例输入
1
10
1 2
2 4
5 8
6 10
7 9
3 1
5 8
12 10
9 7
2 2
样例输出
5

我们可以这样建模:将每个矩形视作一个结点,若矩形A能覆盖矩形B,那么就在作一条结点A指向结点B的有向路径,结果我们会得到一个DAG(有向无环图)。求符合条件的最多矩形数目,就是DAG中最长路径上的结点数目。
求DAG上的最长路径上的结点数目,我们可用记忆化搜索求解,(同poj1088滑雪)
代码如下:
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int MAXN=;
vector<int> G[MAXN];
int V,E;
int d[MAXN];
int dfs(int u)
{
if(d[u]>) return d[u];
int ans=;
for(int i=;i<G[u].size();i++)
{
ans=max(ans,dfs(G[u][i])+);
}
return d[u]=ans;
}
int main()
{
memset(d,,sizeof(d));
scanf("%d%d",&V,&E);
for(int i=;i<E;i++)
{
int u,v;
scanf("%d%d",&u,&v);
G[u].push_back(v);
}
int ans=;
for(int i=;i<=V;i++)
ans=max(ans,dfs(i));
printf("%d\n",ans+);
return ;
}
/*
7 8
1 2
1 3
3 2
2 4
2 5
4 6
6 5
5 7 7
*/

这样 矩形覆盖问题就迎刃而解。

#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int MAXN=;
vector<int> G[MAXN];
struct Rect{
int x,y;
}rect[MAXN];
int n;
void createG()
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if((rect[i].x<rect[j].x&&rect[i].y<rect[j].y)||(rect[i].y<rect[j].x&&rect[i].x<rect[j].y))
{
G[j].push_back(i);
}
}
int d[MAXN];
int dfs(int u)
{
if(d[u]>) return d[u];
int ans=;
for(int i=;i<G[u].size();i++)
ans=max(ans,dfs(G[u][i])+);
return d[u]=ans;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
G[i].clear();
scanf("%d%d",&rect[i].x,&rect[i].y);
}
createG();
memset(d,,sizeof(d));
int ans=;
for(int i=;i<=n;i++)
ans=max(ans,dfs(i));
printf("%d\n",ans+);
} return ;
}

该问题也可以转化为最长上升子序列问题求解。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int INF=;
struct Rect{
int x,y;
}rect[];
int n;
bool comp(const Rect &a,const Rect &b)
{
if(a.x==b.x) return a.y > b.y;//µ±±ß³¤ÏàͬʱÓдóµ½Ð¡ÅÅÐò
else return a.x < b.x;
}
int dp[];
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%d%d",&rect[i].x,&rect[i].y);
dp[i]=INF;
}
sort(rect,rect+n,comp);
for(int i=;i<n;i++)
*lower_bound(dp,dp+n,rect[i].y)=rect[i].y;
printf("%d\n",lower_bound(dp,dp+n,INF)-dp);
} return ;
}

DAG上的DP的更多相关文章

  1. UVA - 10131Is Bigger Smarter?(DAG上的DP)

    题目:UVA - 10131Is Bigger Smarter? (DAG) 题目大意:给出一群大象的体重和IQ.要求挑选最多的大象,组成一个序列.严格的体重递增,IQ递减的序列.输出最多的大象数目和 ...

  2. BZOJ 3998 TJOI2015 弦论 后缀自动机+DAG上的dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3998 题意概述:对于一个给定长度为N的字符串,求它的第K小子串是什么,T为0则表示不同位置 ...

  3. NYOJ16 矩形嵌套 【DAG上的DP/LIS】

    矩形嵌套 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c ...

  4. UVA 10917 Walk Through the Forest(dijkstra+DAG上的dp)

    用新模板阿姨了一天,换成原来的一遍就ac了= = 题意很重要..最关键的一句话是说:若走A->B这条边,必然是d[B]<d[A],d[]数组保存的是各点到终点的最短路. 所以先做dij,由 ...

  5. BZOJ 4011 HNOI2015 落忆枫音 DAG上的dp(实际上重点在于分析)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4011 题意概述:给出一张N点的DAG(从1可以到达所有的点),点1的入度为0.现在加一条原 ...

  6. UVA 11324 The Largest Clique(缩点+DAG上的dp)

    求最大团.和等价性证明有类似之处,只不过这个不是求互推,而是只要a->b,或b->a即可. 同样的,容易想到先缩点,得到DAG,每个节点上保存SCC的点数,相信任意一条由根节点(入度为零) ...

  7. Codeforces 919D Substring ( 拓扑排序 && DAG上的DP )

    题意 : 给出含有 N 个点 M 条边的图(可能不连通或者包含环),每个点都标有一个小写字母编号,然后问你有没有一条路径使得路径上重复字母个数最多的次数是多少次,例如图上有条路径的顶点标号顺序是  a ...

  8. (板子)缩点 + DAG上的DP(深搜)luogu P3387

    板子传送门 根据题目意思,我们只需要找出一条点权最大的路径就行了,不限制点的个数.那么考虑对于一个环上的点被选择了,一整条环是不是应该都被选择,这一定很优,能选干嘛不选.很关键的是题目还允许我们重复经 ...

  9. UVa1025 (DAG上的dp)

    这是紫书上的第一个dp哈. 1.状态定义:dp[i][j]---->到时刻i的时候(出发的时候时刻为0,约定时间为时刻time),从j号车站开往N号车站,在车站等待的最少的时间. 2.这个人当前 ...

随机推荐

  1. EasyUI datagrid border处理,加边框,去边框,都可以,easyuidatagrid

    下面是EasyUI 官网上处理datagrid border的demo: 主要是这句: $('#dg').datagrid('getPanel').removeClass('lines-both li ...

  2. 【随想】android是个什么东西,andorid机制随想

    优秀程序猿的天性就是好奇,软件是怎么运作的.屏幕是怎样显示的.桌面窗口为何能如此人性化的被鼠标拖动? 假设你常常会有这样一些问题迸发在脑海中,恭喜你,你是一名非常有潜力的程序猿. 我在大学读的是自己主 ...

  3. php返回HTTP状态码

    HTTP协议状态码,调用函数时候只需要将$num赋予一个下表中的已知值就直接会返回状态了.<?PHP /** * HTTP Protocol defined status codes* HTTP ...

  4. 五、Web框架基础(2)

    Tornado 异步协程编程.(其实是异步IO而非真正的异步,从内核拷贝到用户空间的过程还是同步的) 适合用户量大.高并发,如抢票.网页游戏.在线聊天等场景:或大量HTTP持久连接,通过单TCP持久连 ...

  5. shell脚本定时任务 ( linux系统)

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGV5YW5nanVu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA ...

  6. iOS8中提示框的使用UIAlertController(UIAlertView和UIActionSheet二合一)

     本文转载至 http://blog.csdn.net/liuwuguigui/article/details/39494597       IOS8UIAlertViewUIActionSheet ...

  7. wince c# 创建桌面快捷方式 .

    static void Create() { string PathGPRS = System.IO.Path.GetDirectoryName(System.Reflection.Assembly. ...

  8. LeetCode算法题目解答汇总(转自四火的唠叨)

    LeetCode算法题目解答汇总 本文转自<四火的唠叨> 只要不是特别忙或者特别不方便,最近一直保持着每天做几道算法题的规律,到后来随着难度的增加,每天做的题目越来越少.我的初衷就是练习, ...

  9. cenos 6.5 安装apache 2.4.28出现种问题

    编译出错 configure: error: APR-util not found. Please read the documentation 解决办法 wget http://apache.fre ...

  10. iTerm2常用的快捷键

    iTerm2 是 Mac 上面一款优秀的终端软件,配合 Oh My Zsh 一起使用,整个终端的体验会变得异常流畅和舒服.iTerm2 的颜值也是非常的高的,完全可以说秒杀 Mac 自带的终端软件.既 ...