[LUOGU] P1880 [NOI1995]石子合并
题目描述
在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。
试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.
输入输出格式
输入格式:
数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.
输出格式:
输出共2行,第1行为最小得分,第2行为最大得分.
输入输出样例
输入样例#1: 复制
4
4 5 9 4
输出样例#1: 复制
43
贪心是不行的-.-
最小值 f[i][j]为区间i-j上合并的最小值,则f[i][j]可以通过枚举中间的点k来更新
f[i][j]=min(f[i][j],f[i][k]+f[i][k+1]+sum(i,j))
sum可以使用前缀和
最大值同理
注意这是一个环,用2n的空间存成一条即可
#include<iostream>
using namespace std;
const int MAXN=2000;
const int INF=1<<20;
int n;
int a[MAXN],s[MAXN],f[MAXN][MAXN],g[MAXN][MAXN];
int sum(int x,int y){
return s[y]-s[x-1];
}
int main(){
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
a[i+n]=a[i];
}
for(int i=1;i<=n*2;i++){
s[i]=s[i-1]+a[i];
}
for(int i=2*n;i>=1;i--){
for(int j=i+1;j<i+n;j++){
f[i][j]=INF;
for(int k=i;k<j;k++){
f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]+sum(i,j));
g[i][j]=max(g[i][j],g[i][k]+g[k+1][j]+sum(i,j));
}
}
}
int mnans=INF,mxans=-INF;
for(int i=1;i<=n;i++){
mnans=min(mnans,f[i][i+n-1]);
mxans=max(mxans,g[i][i+n-1]);
}
cout<<mnans<<endl<<mxans;
return 0;
}
[LUOGU] P1880 [NOI1995]石子合并的更多相关文章
- 【区间dp】- P1880 [NOI1995] 石子合并
记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...
- P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]
P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...
- 洛谷 P1880 [NOI1995]石子合并 题解
P1880 [NOI1995]石子合并 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试 ...
- 区间DP小结 及例题分析:P1880 [NOI1995]石子合并,P1063 能量项链
区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合 ...
- P1880 [NOI1995]石子合并 区间dp
P1880 [NOI1995]石子合并 #include <bits/stdc++.h> using namespace std; ; const int inf = 0x3f3f3f3f ...
- 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并
洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...
- [洛谷P1880][NOI1995]石子合并
区间DP模板题 区间DP模板Code: ;len<=n;len++) { ;i<=*n-;i++) //区间左端点 { ; //区间右端点 for(int k=i;k<j;k++) ...
- 洛谷 P1880 [NOI1995] 石子合并(区间DP)
传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...
- 区间DP初探 P1880 [NOI1995]石子合并
https://www.luogu.org/problemnew/show/P1880 区间dp,顾名思义,是以区间为阶段的一种线性dp的拓展 状态常定义为$f[i][j]$,表示区间[i,j]的某种 ...
随机推荐
- 在linux下pycharm无法输入中文
1.在centos系统下,在pycharm中,输入中文件时,显示的字母,无法显示中文字符. 首先,在centos下安装中文输入法,下面安装的是五笔输入法. a::yum安装ibus的五笔输入法: yu ...
- Execution failed for task ':app:lintVitalRelease'.
解决方法:在build.gradle文件的android部分添加如下代码: lintOptions { checkReleaseBuilds false abortOnError false} 最后成 ...
- echarts相关属性设置(3)环状图
option = { grid: { left: '3%', top: '0%', // height: 500, right: '30%', containLabel: true, }, legen ...
- JavaScript引擎基本原理:Shapes和Inline Caches
原文链接: JavaScript engine fundamentals:Shapes and line Cahes 这篇文章描述了一些在js引擎中通用的关键点, 并不只是V8, 这个引擎的作者(Be ...
- python入门之json与pickle数据序列化
前提实例: 将一个字典存放在文件里 #存入数据info = { 'name':'chy', 'age':18 } f = open("test.txt","w" ...
- 101 Symmetric Tree 判断一颗二叉树是否是镜像二叉树
给定一个二叉树,检查它是否是它自己的镜像(即,围绕它的中心对称).例如,这个二叉树 [1,2,2,3,4,4,3] 是对称的. 1 / \ 2 2 / \ / \3 4 4 3但是 ...
- HTML <form> 标签的 enctype
form的enctype有三种 application/x-www-form-urlencoded 在发送前编码所有字符(默认) multipart/form-data 不对字符编码. 在使用包含文件 ...
- corn表达式 经典
https://www.cnblogs.com/GarfieldTom/p/3746290.html
- 需求管理是CMM可重复级中的6个关键过程域之一,其主要目标是__________。A.客观地验证需求管理活动
需求管理是CMM可重复级中的6个关键过程域之一,其主要目标是__________.A.客观地验证需求管理活动 需求管理是CMM可重复级中的6个关键过程域之一,其主要目标是_________ ...
- JavaScprit30-5 学习笔记
最近忙这忙那...好久没看视频学习了...但是该学的还是要学. 这次要实现的效果是利用 flex 的 特性 来实现 可伸缩的图片墙演示 页面的展示...: 效果挺炫酷啊... 那么就来总结一下 学到了 ...