[LUOGU] P1880 [NOI1995]石子合并
题目描述
在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。
试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.
输入输出格式
输入格式:
数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.
输出格式:
输出共2行,第1行为最小得分,第2行为最大得分.
输入输出样例
输入样例#1: 复制
4
4 5 9 4
输出样例#1: 复制
43
贪心是不行的-.-
最小值 f[i][j]为区间i-j上合并的最小值,则f[i][j]可以通过枚举中间的点k来更新
f[i][j]=min(f[i][j],f[i][k]+f[i][k+1]+sum(i,j))
sum可以使用前缀和
最大值同理
注意这是一个环,用2n的空间存成一条即可
#include<iostream>
using namespace std;
const int MAXN=2000;
const int INF=1<<20;
int n;
int a[MAXN],s[MAXN],f[MAXN][MAXN],g[MAXN][MAXN];
int sum(int x,int y){
return s[y]-s[x-1];
}
int main(){
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
a[i+n]=a[i];
}
for(int i=1;i<=n*2;i++){
s[i]=s[i-1]+a[i];
}
for(int i=2*n;i>=1;i--){
for(int j=i+1;j<i+n;j++){
f[i][j]=INF;
for(int k=i;k<j;k++){
f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]+sum(i,j));
g[i][j]=max(g[i][j],g[i][k]+g[k+1][j]+sum(i,j));
}
}
}
int mnans=INF,mxans=-INF;
for(int i=1;i<=n;i++){
mnans=min(mnans,f[i][i+n-1]);
mxans=max(mxans,g[i][i+n-1]);
}
cout<<mnans<<endl<<mxans;
return 0;
}
[LUOGU] P1880 [NOI1995]石子合并的更多相关文章
- 【区间dp】- P1880 [NOI1995] 石子合并
记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...
- P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]
P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...
- 洛谷 P1880 [NOI1995]石子合并 题解
P1880 [NOI1995]石子合并 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试 ...
- 区间DP小结 及例题分析:P1880 [NOI1995]石子合并,P1063 能量项链
区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合 ...
- P1880 [NOI1995]石子合并 区间dp
P1880 [NOI1995]石子合并 #include <bits/stdc++.h> using namespace std; ; const int inf = 0x3f3f3f3f ...
- 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并
洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...
- [洛谷P1880][NOI1995]石子合并
区间DP模板题 区间DP模板Code: ;len<=n;len++) { ;i<=*n-;i++) //区间左端点 { ; //区间右端点 for(int k=i;k<j;k++) ...
- 洛谷 P1880 [NOI1995] 石子合并(区间DP)
传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...
- 区间DP初探 P1880 [NOI1995]石子合并
https://www.luogu.org/problemnew/show/P1880 区间dp,顾名思义,是以区间为阶段的一种线性dp的拓展 状态常定义为$f[i][j]$,表示区间[i,j]的某种 ...
随机推荐
- 跳转到另一个APP
看看这个代码: http://code4app.com/codesample/4fcc512d6803fae60b000002 inApp跳转,不过需要Nimbus类库. 要跳转到另一个APP,需要另 ...
- Luogu P4892 GodFly的寻宝之旅【状压dp】By cellur925
题目传送门 又是一道状压+计数类好题hh(真香).数据范围非常友好,告诉我们\(n<=18\),非常符合状压的性质. 其实感觉和\(Hamilton\)路径那题还是有些相似的,我们可以类似地设计 ...
- Java EE规范下载
- hdu 6319 Problem A. Ascending Rating (2018 Multi-University Training Contest 3)
#include <stdio.h> #include <iostream> #include <cstdlib> #include <cmath> # ...
- TDH-kafka
一.kafka原理:1.broker:一个kafka实例,多个broker组成kafka集群: 2.topic:逻辑概念,同一类数据的集合,可以看做一张表: 3.producer:将数据写入topic ...
- nodejs Async 使用方法(解决多层回调嵌套)
由于nodejs是异步处理的,有时我们想同步从mysql里取出数据,最后在处理逻辑 就需要用到此扩展: 此扩展可以避免多层回调: 安装方法: npm install async 使用方法: 1.par ...
- java的8大排序详解
本文转自 黑色幽默Lion的博客 http://www.cnblogs.com/pepcod/archive/2012/08/01/2618300.html 最近开始学习java,排序的部分之前学C的 ...
- DBAplus社群线上分享----Sharding-Sphere之Proxy初探
功能 Cobar Mycat Heisenberg Shark TDDL Sharding-JDBC 是否开源 开源 开源 开源 开源 部分开源 开源 架构模型 Proxy架构 Proxy架构 Pro ...
- Code First约定-数据注释
通过实体框架Code First,可以使用您自己的域类表示 EF 执行查询.更改跟踪和更新函数所依赖的模型.Code First 利用称为“约定先于配置”的编程模式.这就是说,Code First 将 ...
- 完成FileUpload的文件上传功能,且可改按钮样式
FileUpload控件: 更改按钮样式思路: 自己定义一个按钮,设置该按钮的样式,然后将FileUpload控件通过定位定在自己定义的按钮上面,设置z-index,使得控件浮在自己定义的按钮上面,记 ...