一致性哈希算法原理、避免数据热点方法及Java实现
1、平衡性(Balance):平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用。很多哈希算法都能够满足这一条件。
2、单调性(Monotonicity):单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲加入到系统中。哈希的结果应能够保证原有已分配的内容可以被映射到原有的或者新的缓冲中去,而不会被映射到旧的缓冲集合中的其他缓冲区。
3、分散性(Spread):在分布式环境中,终端有可能看不到所有的缓冲,而是只能看到其中的一部分。当终端希望通过哈希过程将内容映射到缓冲上时,由于不同终端所见的缓冲范围有可能不同,从而导致哈希的结果不一致,最终的结果是相同的内容被不同的终端映射到不同的缓冲区中。这种情况显然是应该避免的,因为它导致相同内容被存储到不同缓冲中去,降低了系统存储的效率。分散性的定义就是上述情况发生的严重程度。好的哈希算法应能够尽量避免不一致的情况发生,也就是尽量降低分散性。
4、负载(Load):负载问题实际上是从另一个角度看待分散性问题。既然不同的终端可能将相同的内容映射到不同的缓冲区中,那么对于一个特定的缓冲区而言,也可能被不同的用户映射为不同 的内容。与分散性一样,这种情况也是应当避免的,因此好的哈希算法应能够尽量降低缓冲的负荷。
一致性哈希算法是分布式系统中常用的算法。比如,一个分布式的存储系统,要将数据存储到具体的节点上,如果采用普通的hash方法,将数据映射到具体的节点上,如key%N,key是数据的key,N是机器节点数,如果有一个机器加入或退出这个集群,则所有的数据映射都无效了,如果是持久化存储则要做数据迁移,如果是分布式缓存,则其他缓存就失效了。
因此,引入了一致性哈希算法:

把数据用hash函数(如MD5),映射到一个很大的空间里,如图所示。数据的存储时,先得到一个hash值,对应到这个环中的每个位置,如k1对应到了图中所示的位置,然后沿顺时针找到一个机器节点B,将k1存储到B这个节点中。
如果B节点宕机了,则B上的数据就会落到C节点上,如下图所示:

这样,只会影响C节点,对其他的节点A,D的数据不会造成影响。然而,这又会造成一个“雪崩”的情况,即C节点由于承担了B节点的数据,所以C节点的负载会变高,C节点很容易也宕机,这样依次下去,这样造成整个集群都挂了。
为此,引入了“虚拟节点”的概念:即把想象在这个环上有很多“虚拟节点”,数据的存储是沿着环的顺时针方向找一个虚拟节点,每个虚拟节点都会关联到一个真实节点,如下图所使用:

图中的A1、A2、B1、B2、C1、C2、D1、D2都是虚拟节点,机器A负载存储A1、A2的数据,机器B负载存储B1、B2的数据,机器C负载存储C1、C2的数据。由于这些虚拟节点数量很多,均匀分布,因此不会造成“雪崩”现象。
Java实现:
- public class Shard<S> { // S类封装了机器节点的信息 ,如name、password、ip、port等
- private TreeMap<Long, S> nodes; // 虚拟节点
- private List<S> shards; // 真实机器节点
- private final int NODE_NUM = 100; // 每个机器节点关联的虚拟节点个数
- public Shard(List<S> shards) {
- super();
- this.shards = shards;
- init();
- }
- private void init() { // 初始化一致性hash环
- nodes = new TreeMap<Long, S>();
- for (int i = 0; i != shards.size(); ++i) { // 每个真实机器节点都需要关联虚拟节点
- final S shardInfo = shards.get(i);
- for (int n = 0; n < NODE_NUM; n++)
- // 一个真实机器节点关联NODE_NUM个虚拟节点
- nodes.put(hash("SHARD-" + i + "-NODE-" + n), shardInfo);
- }
- }
- public S getShardInfo(String key) {
- SortedMap<Long, S> tail = nodes.tailMap(hash(key)); // 沿环的顺时针找到一个虚拟节点
- if (tail.size() == 0) {
- return nodes.get(nodes.firstKey());
- }
- return tail.get(tail.firstKey()); // 返回该虚拟节点对应的真实机器节点的信息
- }
- /**
- * MurMurHash算法,是非加密HASH算法,性能很高,
- * 比传统的CRC32,MD5,SHA-1(这两个算法都是加密HASH算法,复杂度本身就很高,带来的性能上的损害也不可避免)
- * 等HASH算法要快很多,而且据说这个算法的碰撞率很低.
- * http://murmurhash.googlepages.com/
- */
- private Long hash(String key) {
- ByteBuffer buf = ByteBuffer.wrap(key.getBytes());
- int seed = 0x1234ABCD;
- ByteOrder byteOrder = buf.order();
- buf.order(ByteOrder.LITTLE_ENDIAN);
- long m = 0xc6a4a7935bd1e995L;
- int r = 47;
- long h = seed ^ (buf.remaining() * m);
- long k;
- while (buf.remaining() >= 8) {
- k = buf.getLong();
- k *= m;
- k ^= k >>> r;
- k *= m;
- h ^= k;
- h *= m;
- }
- if (buf.remaining() > 0) {
- ByteBuffer finish = ByteBuffer.allocate(8).order(
- ByteOrder.LITTLE_ENDIAN);
- // for big-endian version, do this first:
- // finish.position(8-buf.remaining());
- finish.put(buf).rewind();
- h ^= finish.getLong();
- h *= m;
- }
- h ^= h >>> r;
- h *= m;
- h ^= h >>> r;
- buf.order(byteOrder);
- return h;
- }
- }
一致性哈希算法原理、避免数据热点方法及Java实现的更多相关文章
- 一致性哈希算法原理及Java实现
一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简 单 ...
- 一致性哈希算法与Java实现
原文:http://blog.csdn.net/wuhuan_wp/article/details/7010071 一致性哈希算法是分布式系统中常用的算法.比如,一个分布式的存储系统,要将数据存储到具 ...
- Java_一致性哈希算法与Java实现
摘自:http://blog.csdn.net/wuhuan_wp/article/details/7010071 一致性哈希算法是分布式系统中常用的算法.比如,一个分布式的存储系统,要将数据存储到具 ...
- 白话解析:一致性哈希算法 consistent hashing【转】
学习一致性哈希算法原理的时候看到博主朱双印的一片文章,看完就懂,大佬! 白话解析:一致性哈希算法 consistent hashing
- 一致性哈希算法——算法解决的核心问题是当slot数发生变化时,能够尽量少的移动数据
一致性哈希算法 摘自:http://blog.codinglabs.org/articles/consistent-hashing.html 算法简述 一致性哈希算法(Consistent Hashi ...
- 五分钟理解一致性哈希算法(consistent hashing)
转载请说明出处:http://blog.csdn.net/cywosp/article/details/23397179 一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法 ...
- 每天进步一点点——五分钟理解一致性哈希算法(consistent hashing)
转载请说明出处:http://blog.csdn.net/cywosp/article/details/23397179 一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT) ...
- 一致性哈希算法(consistent hashing)【转】
一致性哈希算法 来自:http://blog.csdn.net/cywosp/article/details/23397179 一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希 ...
- 彻底理解一致性哈希算法(consistent hashing)
转载请说明出处:http://blog.csdn.net/cywosp/article/details/23397179 一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT) ...
随机推荐
- 【SQLServer2008】之改变主键当为null时也不会报错,可以入数据库。
在SqlServer红框中设置主键,右键会有添加主键选项,并且设置不能为null. 当我们插入主键数据如果为null时,会插不进去,这时候我们需要修改一下,如下图: “标识规范”中选择“是”,就可以了 ...
- 用array_search 数组中查找是否存在这个 值
#判读里面是否还有id=1的超级管理员 $key=array_search(1, $ids); #判读这个是否存在 if($key!==FALSE){ #如果存在就unset掉这个 unset($id ...
- iOS 可选择的购物车
最近看了淘宝的购物车,于是做了一个可选择的购物车模板. 如果有好的建议请提出,带我日后更新.
- NVR硬件录像机web无插件播放方案功能实现之相关接口注意事项说明
该篇博文主要用来说明EasyNVR硬件录像回放版本的相关接口说明和调用的demo: 方便用户的二次开发和集成. 软件根目录会包含接口文档的,因此,本文主要是对一些特定接口的说明和接口实现功能的讲解以及 ...
- HttpPost (URLConnection)传参数中文乱码
client.getParams().setParameter(CoreConnectionPNames.CONNECTION_TIMEOUT, 1000000); client.getParams( ...
- 【题解】P2048 [NOI2010]超级钢琴
[题解][P2048 NOI2010]超级钢琴 一道非常套路的题目.是堆的套路题. 考虑前缀和,我们要是确定了左端点,就只需要在右端区间查询最大的那个加进来就好了.\(sum_j-sum_{i-1} ...
- linux怎么设置vsftp用户访问目录权限
1.在指定的目录创建文件夹(访问的目录): mkdir picture 2.创建一个用户组(zdhgroup): groupadd zdhgroup 3.创建一个用户并指定路径和组: useradd ...
- ABAP upload file(*.txt *.csv *.xls)
转自:http://blog.csdn.net/jy00873757/article/details/8534492 在SAP我们经常会用到*.txt, *.csv, *.xls三种文件格式 *.TX ...
- 【shell】shuf命令,随机排序
shuf命令主要用来对输入的每一行进行随机排序输出,我们可以利用这个属性,实现在几个文件中随机读取一个的功能 如下,zls.txt文件有三行,我们想要随机从中读取一行. 可以看到,每次读取顺序都不一样 ...
- initcall_debug简要说明【转】
本文转载自:https://blog.csdn.net/zangdongming/article/details/37769265 Linux version 3.10.40 1. 使用说明 Docu ...