E. Lost in WHU。矩阵快速幂!
比赛的时候一直不知道样例怎么来的,然后和队友推了一下,然后还是没什么思路,样例手推很困难,然后我随口枚举了几个算法dp、广搜、快速幂。比赛结束问了谷队长结果真的是用快速幂写。
题意:n个点,m条边,每一步可以从一个点走到与其相连的点上,求如果最多可以走T步,1到n有多少种走法。
思路:裸的矩阵快速幂,初始矩阵在输入的时候连的双向边,表示可走,但要注意从n出发的话只有单向边,题目说明走到n号节点就不能走出去了。n到n也要连一条边。然后求这个矩阵的T次方,结果就是第一行第n列的值。
int n,m,t;
struct matrix
{
ll a[101][101];
};
matrix mul(matrix A,matrix B)
{
matrix res;
memset(res.a,0,sizeof(res.a));
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
res.a[i][j]=(res.a[i][j]+A.a[i][k]*B.a[k][j])%MOD;
return res;
}
matrix mul_pow(matrix A)
{
matrix res;
memset(res.a,0,sizeof(res.a));
for(int i=1;i<=n;i++) res.a[i][i]=1;
while(t)
{
if(t&1) res=mul(res,A);
A=mul(A,A);
t>>=1;
}
return res;
}
void solve()
{
int u,v;
matrix res;
for(int i=0; i<m; i++)
{
scanf("%d%d",&u,&v);
if(u==n) res.a[v][u]=1;
else if(v==n) res.a[u][v]=1;
else res.a[u][v]=res.a[v][u]=1;
}
res.a[n][n]=1;
scanf("%d",&t);
res=mul_pow(res);
printf("%lld\n",res.a[1][n]);
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
solve();
}
return 0;
}
E. Lost in WHU。矩阵快速幂!的更多相关文章
- 2017 Wuhan University Programming Contest (Online Round) Lost in WHU 矩阵快速幂 一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开。
/** 题目:Lost in WHU 链接:https://oj.ejq.me/problem/26 题意:一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开. ...
- 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...
- 51nod 算法马拉松18 B 非010串 矩阵快速幂
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...
- 51nod 1113 矩阵快速幂
题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
- HDU5950(矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...
- 51nod 1126 矩阵快速幂 水
有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...
- hdu2604(递推,矩阵快速幂)
题目链接:hdu2604 这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式) 可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS: ...
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
随机推荐
- 如何使用KeyChain保存和获取UDID
本文是iOS7系列文章第一篇文章,主要介绍使用KeyChain保存和获取APP数据,解决iOS7上获取不变UDID的问题.并给出一个获取UDID的工具类,使用方便,只需要替换两个地方即可. 一.iOS ...
- sourceTree配置bitbucket
1. 为github增加账号信息 选择添加远程库 选择添加一个账号 输入用户名: 按照提示输入密码 选择bitbuchet为默认 选中搜索克隆
- WPF知识点全攻略10- 路由事件
路由事件是WPF不得不提,不得不会系列又一 先来看一下他的定义: 功能定义:路由事件是一种可以针对元素树中的多个侦听器(而不是仅针对引发该事件的对象)调用处理程序的事件. 实现定义:路由事件是一个 C ...
- idea下使用码云插件进行git提交
1)下载插件 file->setting->plugins->右侧搜索gitee->安装->重启ide 2)配置版本控制 file->setting->Ver ...
- 搭建SSI开发框架原理
Spring2.5.Struts2.Ibatis开发框架搭建(一) ssi, ibatis 一.框架下载 1.1 Struts2框架 Struts2框架发展于WebWork,现在捐献给了Apach ...
- jdk concurrent 中 AbstractQueuedSynchronizer uml 图.
要理解 ReentrantLock 先理解AbstractQueuedSynchronizer 依赖关系. 2
- javaEE(7)_自定义标签&JSTL标签(JSP Standard Tag Library)
一.自定义标签简介 1.自定义标签主要用于移除Jsp页面中的java代码,jsp禁止出现一行java脚本. 2.使用自定义标签移除jsp页面中的java代码,只需要完成以下两个步骤: •编写一个实现T ...
- C# 使用Epplus导出Excel [3]:合并列连续相同数据
C# 使用Epplus导出Excel [1]:导出固定列数据 C# 使用Epplus导出Excel [2]:导出动态列数据 C# 使用Epplus导出Excel [3]:合并列连续相同数据 C# 使用 ...
- js事件(事件冒泡与事件捕获)
事件冒泡和事件捕获分别由微软和网景公司提出,这两个概念都是为了解决页面中事件流(事件发生顺序)的问题. <div id='aa' click='po'> <p id='bb' cli ...
- log4j日志输出到文件的配置
1.Maven的dependency 2.log4j.properties的配置 3.Junit的Test类 4.web.xml的配置(非必要) 5.spring的db.config的配置(非必要) ...