这个条件非常妙啊,奇数和奇数一定满足1,因为\( (2a+1)2+(2b+1)2=4a2+4a+4b2+4b+2=2(2(a2+a+b2+b)+1) \)里面这个一定不是平方数因为除二后是个奇数不能再分一个2出来;偶数和偶数一定满足2,因为gcd>=2

考虑最小割,先加上所有收益然后求割之后满足条件的最小代价

所以对于a[i]&1,连接(s,i,b[i]),否则连接(i,t,b[i]),对于不能同时选的i,j来说,连(i,j),表示要么割掉i的收益要么割掉j的收益

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
using namespace std;
const int N=2005;
int n,a[N],b[N],h[N],cnt=1,le[N],s,t,ans;
struct qwe
{
int ne,to,va;
}e[N*N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void ins(int u,int v,int w)
{
add(u,v,w);
add(v,u,0);
}
bool bfs()
{
memset(le,0,sizeof(le));
queue<int>q;
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
int dfs(int u,int f)
{
if(u==t||!f)
return f;
int us=0;
for(int i=h[u];i&&us<f;i=e[i].ne)
if(e[i].va>0&&le[e[i].to]==le[u]+1)
{
int t=dfs(e[i].to,min(e[i].va,f-us));
e[i].va-=t;
e[i^1].va+=t;
us+=t;
}
if(!us)
le[u]=0;
return us;
}
int dinic()
{
int r=0;
while(bfs())
r+=dfs(s,1e9);
return r;
}
int gcd(int a,int b)
{
return !b?a:gcd(b,a%b);
}
long long clc(int a,int b)
{
return 1ll*a*a+1ll*b*b;
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
a[i]=read();
for(int i=1;i<=n;i++)
b[i]=read();
s=0,t=n+1;
for(int i=1;i<=n;i++)
{
if(a[i]&1)
ins(s,i,b[i]);//,cerr<<i<<endl;
else
ins(i,t,b[i]);
ans+=b[i];
}
for(int i=1;i<=n;i++)
if(a[i]&1)
for(int j=1;j<=n;j++)
if(!(a[j]&1)&&gcd(a[i],a[j])==1&&(long long)sqrt(clc(a[i],a[j]))*(long long)sqrt(clc(a[i],a[j]))==clc(a[i],a[j]))
ins(i,j,1e9);//,cerr<<i<<" "<<j<<endl;
printf("%d\n",ans-dinic());
return 0;
}

bzoj 3158: 千钧一发【最小割】的更多相关文章

  1. bzoj 3158 千钧一发 —— 最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3158 \( a[i] \) 是奇数则满足条件1,是偶数则显然满足条件2: 因为如果把两个奇数 ...

  2. BZOJ 3158 千钧一发 最小割

    分析: 偶数对满足条件2,所有奇数对满足条件1. 如果你能一眼看出这个规律,这道题就完成了一半. 我们只需要将数分为两类,a值为奇数,就从S向这个点连容量为b值的边,a值为偶数,就从这个点向T连容量为 ...

  3. bzoj 3158 千钧一发(最小割)

    3158: 千钧一发 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 767  Solved: 290[Submit][Status][Discuss] ...

  4. 【BZOJ-3275&3158】Number&千钧一发 最小割

    3275: Number Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 748  Solved: 316[Submit][Status][Discus ...

  5. BZOJ 3158: 千钧一发

    3158: 千钧一发 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1201  Solved: 446[Submit][Status][Discuss ...

  6. bzoj 3158 千钧一发——网络流

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3158 发现偶数之间一定满足第二个条件:奇数之间一定满足第一个条件 ( \( (2m+1)^{ ...

  7. spoj 839 OPTM - Optimal Marks&&bzoj 2400【最小割】

    因为是异或运算,所以考虑对每一位操作.对于所有已知mark的点,mark的当前位为1则连接(s,i,inf),否则连(i,t,inf),然后其他的边按照原图连(u,v,1),(v,u,1),跑最大流求 ...

  8. BZOJ 3158 千钧一发 (最大流->二分图带权最大独立集)

    题面:BZOJ传送门 和方格取数问题很像啊 但这道题不能像网格那样黑白染色构造二分图,所以考虑拆点建出二分图 我们容易找出数之间的互斥关系,在不能同时选的两个点之间连一条流量为$inf$的边 由于我们 ...

  9. bzoj 2229 [Zjoi2011]最小割(分治+最小割)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2229 [题意] 回答若干个关于割不超过x的点对数目的询问. [思路] [最小割最多有n ...

随机推荐

  1. 采用ADM2582E/ADM2587E实现完全半/全双工的RS-485/RS-422接口隔离

    RS-485标准是一种常见的总线架构,其通用性及远距离传输能力使其广泛应用于各种通信接口电路.在多数情况下,由于应用环境的恶劣,需要对RS-485接口采用隔离方案以防止出现接地环路. 对RS-485接 ...

  2. yield方式转移执行权的协程之间不是调用者与被调用者的关系,而是彼此对称、平等的

    def simpleGeneratorFun(): yield 1 yield 2 yield 3 for value in simpleGeneratorFun(): print(value) de ...

  3. 20170316 ABAP注意点

    1.debug 时在MODIFY db from table 后数据便提交了: 一般情况下,更新数据库需要commit,但debug会自动commit,程序结束也会自动commit. 2.使用at n ...

  4. (转)SDP协议概述

    1 简介 SDP 完全是一种会话描述格式, 它不属于传输协议. 它使用不同的适当的传输协议,包括会话通知协议(SAP).会话初始协议(SIP). 实时流协议(RTSP).MIME 扩展协议的电子邮件以 ...

  5. 【USACO OPEN 10】hop

    奶牛们正在回味童年,玩一个类似跳格子的游戏,在这个游戏里,奶牛们在草地上画了一行N个格子,(3 <=N <= 250,000),编号为1..N. 就像任何一个好游戏一样,这样的跳格子游戏也 ...

  6. 最全的Android源码目录结构详解【转】

    本文转载自:http://blog.csdn.net/yangwen123/article/details/8055025 Android 2.1|-- Makefile|-- bionic     ...

  7. # <center>merge表不可用的问题</center>

    最近碰到了个很有意思的问题,值得一写 给merge表和基础表添加索引时发生了一个问题,不管是先给merge表加索引还是基础表加索引,如果表数据量大都会导致加索引期间对merge表的查询不可用,因为使用 ...

  8. APP测试走过的那些坑

    我现在的工作有一大部分也是app测试,虽然自己是app开发出身,但是在测试上还是跌入了很多大坑,毕竟二者还是有很大不同,所处的角度也是不一样的.而开发转测试中,我认为较难的也是一个角度的转换,以一个开 ...

  9. finalize方法

    什么是垃圾回收机制 不定时去堆内存中清理不可达对象.不可达的对象并不会马上就会直接回收, 垃圾收集器在一个Java程序中的执行是自动的,不能强制执行,即使程序员能明确地判断出有一块内存已经无用了,是应 ...

  10. tableView滑动时cell消失

    最近做的工程中,出现个奇怪的问题吗,就是上下滑动tableView的时候,cell还未出屏幕就消失了,找了很久找到了原因,是因为界面中需要的cell有很多种,而有的cell的高度是一开始算出来或是固定 ...