题目

Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some roads to connect these barns. If he builds roads for every pair of different barns, then he must build N * (N - 1) / 2 roads, which is so costly that cheapskate John will never do that, though that's the best choice for the cows.

Clever John just had another good idea. He first builds two transferring point S1 and S2, and then builds a road connecting S1 and S2 and N roads connecting each barn with S1 or S2, namely every barn will connect with S1 or S2, but not both. So that every pair of barns will be connected by the roads. To make the cows don't spend too much time while dropping around, John wants to minimize the maximum of distances between every pair of barns.

That's not the whole story because there is another troublesome problem. The cows of some barns hate each other, and John can't connect their barns to the same transferring point. The cows of some barns are friends with each other, and John must connect their barns to the same transferring point. What a headache! Now John turns to you for help. Your task is to find a feasible optimal road-building scheme to make the maximum of distances between every pair of barns as short as possible, which means that you must decide which transferring point each barn should connect to.

We have known the coordinates of S1, S2 and the N barns, the pairs of barns in which the cows hate each other, and the pairs of barns in which the cows are friends with each other.

Note that John always builds roads vertically and horizontally, so the length of road between two places is their Manhattan distance. For example, saying two points with coordinates (x1, y1) and (x2, y2), the Manhattan distance between them is |x1 - x2| + |y1 - y2|.

输入格式

The first line of input consists of 3 integers N, A and B (2 <= N <= 500, 0 <= A <= 1000, 0 <= B <= 1000), which are the number of barns, the number of pairs of barns in which the cows hate each other and the number of pairs of barns in which the cows are friends with each other.

Next line contains 4 integer sx1, sy1, sx2, sy2, which are the coordinates of two different transferring point S1 and S2 respectively.

Each of the following N line contains two integer x and y. They are coordinates of the barns from the first barn to the last one.

Each of the following A lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows hate each other.

The same pair of barns never appears more than once.

Each of the following B lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows are friends with each other. The same pair of barns never appears more than once.

You should note that all the coordinates are in the range [-1000000, 1000000].

输出格式

You just need output a line containing a single integer, which represents the maximum of the distances between every pair of barns, if John selects the optimal road-building scheme. Note if there is no feasible solution, just output -1.

输入样例

4 1 1

12750 28546 15361 32055

6706 3887

10754 8166

12668 19380

15788 16059

3 4

2 3

输出样例

53246

题解

题目大意:

有n个点,分别向两个点S1,S2其中一个连边,S1和S2之间有连边,且存在一些点必须连到同一个点上或必须不连到同一个点上,两点间距离用曼哈顿距离计算,求两点间距离最大值最小是多少?

题解

最大值最小,二分答案

对于二分出的最大值md,\(O(n^2)\)枚举所有点对,尝试两点间的四种连接关系【即谁连S1,谁连S2,或都连其中一个】,判断四种关系中两点间距离是否满足条件,不满足则在2-sat图上加边增加限制

当然,如果一个点连到Sx本身就超过了md,则也要增加限制

原来的限制也要建上

复杂度\(O((n^2 + A + B)log(md))\)

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
#define cls(x) memset(x,0,sizeof(x))
using namespace std;
const int maxn = 2105,maxm = 1000005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
int h[maxn],ne;
struct EDGE{int to,nxt;}ed[maxm];
void build(int u,int v){ed[ne] = (EDGE){v,h[u]}; h[u] = ne++;}
int dfn[maxn],low[maxn],Scc[maxn],st[maxn],scci,top,cnt;
void dfs(int u){
dfn[u] = low[u] = ++cnt;
st[++top] = u;
Redge(u){
if (!dfn[to = ed[k].to]){
dfs(to);
low[u] = min(low[u],low[to]);
}else if (!Scc[to]) low[u] = min(low[u],dfn[to]);
}
if (dfn[u] == low[u]){
scci++;
do{Scc[st[top]] = scci;}while (st[top--] != u);
}
}
int n,m,q,X[maxn],Y[maxn],D,N,A[maxn],B[maxn],d1[maxn],d2[maxn];
int dis(int u,int v){return abs(X[u] - X[v]) + abs(Y[u] - Y[v]);}
void init(){
cls(dfn); cls(Scc); cls(h); ne = 1; scci = cnt = top = 0;
}
bool check(int md){
init();
REP(i,m){
build(A[i],B[i] + n),build(A[i] + n,B[i]);
build(B[i],A[i] + n),build(B[i] + n,A[i]);
}
for (int i = m + 1; i <= m + q; i++){
build(A[i],B[i]),build(A[i] + n,B[i] + n);
build(B[i],A[i]),build(B[i] + n,A[i] + n);
}
for (int i = 1; i <= n; i++){
if (d1[i] > md) build(i,i + n);
if (d2[i] > md) build(i + n,i);
}
for (int i = 1; i <= n; i++)
for (int j = i + 1; j <= n; j++){
if (d1[i] + d1[j] > md) build(i,j + n),build(j,i + n);
if (d2[i] + d2[j] > md) build(i + n,j),build(j + n,i);
if (d1[i] + d2[j] + D > md) build(i,j),build(j + n,i + n);
if (d2[i] + d1[j] + D > md) build(i + n,j + n),build(j,i);
}
for (int i = 1; i <= N; i++) if (!dfn[i]) dfs(i);
for (int i = 1; i <= n; i++) if (Scc[i] == Scc[i + n]) return false;
return true;
}
int main(){
n = read(); m = read(); q = read(); N = n << 1;
X[N + 1] = read(); Y[N + 1] = read(); X[N + 2] = read(); Y[N + 2] = read();
D = dis(N + 1,N + 2);
REP(i,n) X[i] = read(),Y[i] = read(),d1[i] = dis(i,N + 1),d2[i] = dis(i,N + 2);
REP(i,m) A[i] = read(),B[i] = read();
REP(i,q) A[m + i] = read(),B[m + i] = read();
int L = 0,R = 10000000,mid;
while (L < R){
mid = L + R >> 1;
if (check(mid)) R = mid;
else L = mid + 1;
}
if (!check(L)) puts("-1");
else printf("%d\n",L);
return 0;
}

POJ2749 Building roads 【2-sat】的更多相关文章

  1. [POJ2749]Building roads(2-SAT)

    Building roads Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8153   Accepted: 2772 De ...

  2. POJ1251 Jungle Roads 【最小生成树Prim】

    Jungle Roads Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19536   Accepted: 8970 Des ...

  3. POJ2749 Building roads

    嘟嘟嘟 最近把21天漏的给不上. 今天重温了一下2-SAT,感觉很简单.就是把所有条件都转化成如果--必然能导出--.然后就这样连边建图,这样一个强连通分量中的所有点必然都是真或者假.从而根据这个点拆 ...

  4. POJ - 2421 Constructing Roads 【最小生成树Kruscal】

    Constructing Roads Description There are N villages, which are numbered from 1 to N, and you should ...

  5. codeforces 544 D Destroying Roads 【最短路】

    题意:给出n个点,m条边权为1的无向边,破坏最多的道路,使得从s1到t1,s2到t2的距离不超过d1,d2 因为最后s1,t1是连通的,且要破坏掉最多的道路,那么就是求s1到t1之间的最短路 用bfs ...

  6. 【NOIP模拟】roads(最短路径转最小生成树)

    题目背景 SOURCE:NOIP2016-RZZ-1 题目描述 有 N 个城市,这些城市通过 M 条无向边互相连通,每条边有一个权值 Ci ,表示这条边的长度为 2^(Ci) ,没有两条边的长度是相同 ...

  7. 【POJ 1947】 Rebuilding Roads

    [题目链接] 点击打开链接 [算法] f[i][j]表示以i为根的子树中,最少删多少条边可以组成j个节点的子树 树上背包,即可 [代码] #include <algorithm> #inc ...

  8. 【codeforces 746G】New Roads

    [题目链接]:http://codeforces.com/problemset/problem/746/G [题意] 给你3个数字n,t,k; 分别表示一棵树有n个点; 这棵树的深度t,以及叶子节点的 ...

  9. 洛谷 P2872 [USACO07DEC]道路建设Building Roads 题解

    P2872 [USACO07DEC]道路建设Building Roads 题目描述 Farmer John had just acquired several new farms! He wants ...

随机推荐

  1. 浏览器 DNS缓存与DNS prefetch (DNS预解析)

    浏览器 DNS缓存 浏览器DNS缓存的时间跟DNS服务器返回的TTL值无关. 注:TTL(Time-To-Live),就是一条域名解析记录在DNS服务器中的存留时间. 浏览器在获取网站域名的实际IP地 ...

  2. CUDA:Supercomputing for the Masses (用于大量数据的超级计算)-第七节

    第七节:使用下一代CUDA硬件,快乐加速度 原文链接 Rob Farber 是西北太平洋国家实验室(Pacific Northwest National Laboratory)的高级科研人员.他在多个 ...

  3. 循环 -----JavaScript

    本文摘要:http://www.liaoxuefeng.com/ JavaScript的循环有两种,一种是for循环,通过初始条件.结束条件和递增条件来循环执行语句块: var x = 0; var ...

  4. 网络流_spfa最小费用最大流

    最大流: 不断搜索增广路,寻找最小的容量-流量,得到最大流量,但最大流量在有花费时不一定是最小花费. 最小费用最大流 算法思想: 采用贪心的思想,每次找到一条从源点到达汇点的花费最小的路径,增加流量, ...

  5. Java - Java 中的三种 ClassLoader

    1.虚拟机类加载器(称为“bootstrap class loader”),它本身没有父类加载器,它负责加载虚拟机的内置类,由于它是用C.C++写的,所以Java无法拿到其class文件,返回的都是空 ...

  6. 【Django】URL中传递中文的问题

     开发环境:Ubuntu16.04+Django 1.11.9+Python2.7 在开发中,在做查找某些信息这个功能的时候,遇到的一个问题.需要在URL中传递查找的关键字,当关键字为中文的时候,并不 ...

  7. JZOJ 5771. 【NOIP2008模拟】遨游

    5771. [NOIP2008模拟]遨游 (File IO): input:trip.in output:trip.out Time Limits: 2000 ms  Memory Limits: 2 ...

  8. 20190103(GIL,池,阻塞,同步异步)

    GIL锁 什么是GIL GIL全局解释器锁,是防止多个线程在同一时间同时执行的.CPython解释器特有的一种互斥锁. 每一个py文件都会有自己的解释器,也就是说不同py文件的GIL都是独立的, ps ...

  9. 删除项目开发中的.pyc文件

    在实际开发中python会自动生成很多pyc文件,但是这些pyc文件是不需要我们追踪的,删除了对项目也没有影响,下面是删除pyc文件的方法. Linux或Mac系统 find /tmp -name & ...

  10. Codeforces Round #461 (Div. 2) D. Robot Vacuum Cleaner

    D. Robot Vacuum Cleaner time limit per test 1 second memory limit per test 256 megabytes Problem Des ...