简单介绍

combineByKey()是最通用的对key-value型rdd进行聚集操作的聚集函数(aggregation function)。类似于aggregate(),combineByKey()允许用户返回值的类型与输入不一致。

其定义如下,我们可以根据这个形式来分别定义createCombiner、mergeValue和mergeCombiners三个函数:

def combineByKey[C](
  createCombiner: V => C, ##A
  mergeValue: (C, V) => C, ##B
  mergeCombiners: (C, C) => C,##C 
  partitioner: Partitioner,   
  mapSideCombine: Boolean = true,
  serializer: Serializer = null

)

自定义combineByKey

以实现一个计算平均值的功能为例来分别说明createCombiner、mergeValue和mergeCombiners三个函数的作用和定义方法。

##A createCombiner(value)

createCombiner: V => C ,这个函数把当前rdd中的值(value)作为参数,此时我们可以对其做些附加操作(类型转换)并把它返回 (这一步类似于初始化操作,分区内操作)

def createCombiner(value):

   (value, 1)

##B mergeValue(acc, value)

mergeValue: (C, V) => C,该函数把元素V合并到之前的元素C(createCombiner)上 (每个分区内合并)

def mergeValue(acc, value):
# 注意,这里的acc即为createCombiner产生的C。
# 这里,用acc[0]表明为acc这个元组中的第一个元素,在scala中acc._1表示
  (acc[0]+value, acc[1]+1)
###C   mergeCombiners: (acc1, acc2)

mergeCombiners: (C, C) => C,该函数把2个元素C合并 (此函数作用范围在rdd的不同分区间内,跨分区合并)

def mergeCombiners(acc1, acc2):

# 注意,到这一步,表明这个rdd的每条数据都已经被###A和###B捕获匹配完毕

   (acc1[0]+acc2[0], acc1[1]+acc2[1])

案例:

如图,有两个分区,key-value(类别-数量)形式也清楚,我们想知道coffee的平均数量和panda的平均数量。以scala形式写法如下:

val init_data = Array(("coffee", 1), ("coffee", 2), ("panda", 3), ("coffee", 9))
val data = sc.parallelize(init_data) # 两个分区
type MVType = (Int, Int) //定义一个元组类型
data.combineByKey(
   score => (1, score), # createCombiner函数
   (c: MVType, newScore) => (c._1 + 1, c._2 + newScore), # mergeValue函数
   (c1: MVType, c2: MVType) => (c1._1 + c2._1, c1._2 + c2._2) # mergeCombiners函数
).map { case (key, value) => (key, value._2/ value._1) }.map(println(_))

分析:

Partition 1 trace:
(coffee, 1) => new key
accumulators[coffee] = createCombiner(1)
得到:(coffee, (1, 1))
(coffee, 2) => existing key
accumulators[coffee] = mergeValue(accumulators[coffee], 2)
得到:(coffee, (2, 3))
显然(panda, 3) => new key,调用createCombiner方法。
得到:(panda, (1, 3))

Partition 2 trace:
(coffee, 9) => new key
accumulators[coffee] = createCombiner(9)
得到:(coffee, (1, 9))

接下来,mergeCombiners来合并分区:

Merge Partitions
mergeCombiners(partition1.accumulators[coffee], partition2.accumulators[coffee])
得到:(coffee, (3,12))

---------------------------------------------细心看 反复看 不然是假懂--------------------------------

讲明白combineByKey()算子,不是谈源码的更多相关文章

  1. sobel算子原理及opencv源码实现

    sobel算子原理及opencv源码实现 简要描述 sobel算子主要用于获得数字图像的一阶梯度,常见的应用和物理意义是边缘检测. 原理 算子使用两个33的矩阵(图1)算子使用两个33的矩阵(图1)去 ...

  2. 手把手教你使用LabVIEW人工智能视觉工具包快速实现传统Opencv算子的调用(含源码)

    前言 今天我们一起来使用LabVIEW AI视觉工具包快速实现图像的滤波与增强:图像灰度处理:阈值处理与设定:二值化处理:边缘提取与特征提取等基本操作.工具包的安装与下载方法可见之前的博客. 一.图像 ...

  3. 阿里P7终于讲完了JDK+Spring+mybatis+Dubbo+SpringMvc+Netty源码

    前言 这里普及一下,每个公司都有职别定级系统,阿里也是,技术岗以 P 定级,一般校招 P5, 社招 P6 起.其实阅读源码也是有很多诀窍的,这里分享几点心得: 首先要会用.你要知道这个库是干什么的,掌 ...

  4. cache2go源码最后一讲 - examples

    先看一下我们讲到哪里了: cache2go的源码前面我们已经讲完了cacheitem和cachetable的实现,今天cahce和examples会一起讲完~ 1.cache.go源码 ​      ...

  5. LinqToDB 源码分析——DataContext类

    LinqToDB框架是一个轻量级的ORM框架.当然,功能上来讲一定比不上Entity Framework的强大.但是在使用上总让笔者感觉有一点Entity Framework的影子.笔者想过可能的原因 ...

  6. 详解SpringMVC中Controller的方法中参数的工作原理[附带源码分析]

    目录 前言 现象 源码分析 HandlerMethodArgumentResolver与HandlerMethodReturnValueHandler接口介绍 HandlerMethodArgumen ...

  7. HashMap 源码详细分析(JDK1.8)

    一.概述 本篇文章我们来聊聊大家日常开发中常用的一个集合类 - HashMap.HashMap 最早出现在 JDK 1.2中,底层基于散列算法实现.HashMap 允许 null 键和 null 值, ...

  8. 深入出不来nodejs源码-流程总览

    花了差不多两周时间过了下primer C++5th,完成了<C++从入门到精通>.(手动滑稽) 这两天看了下node源码的一些入口方法,其实还是比较懵逼的,语法倒不是难点,主要是大量的宏造 ...

  9. 【MVC - 参数原理】详解SpringMVC中Controller的方法中参数的工作原理[附带源码分析]

    前言 SpringMVC是目前主流的Web MVC框架之一. 如果有同学对它不熟悉,那么请参考它的入门blog:http://www.cnblogs.com/fangjian0423/p/spring ...

随机推荐

  1. hdu-4417 Super Mario(树状数组 + 划分树)

    题目链接: Super Mario Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Other ...

  2. OpenCv-Python 图像处理基本操作

    1. 图片加载.显示和保存 import cv2 img = cv2.imread("01.jpg") imgGrey = cv2.imread("01.jpg" ...

  3. L2-028 秀恩爱分得快(25 分)

    古人云:秀恩爱,分得快. 互联网上每天都有大量人发布大量照片,我们通过分析这些照片,可以分析人与人之间的亲密度.如果一张照片上出现了 K 个人,这些人两两间的亲密度就被定义为 1/K.任意两个人如果同 ...

  4. BZOJ4836: [Lydsy1704月赛]二元运算

    BZOJ4836: [Lydsy1704月赛]二元运算 https://lydsy.com/JudgeOnline/problem.php?id=4836 分析: 分开做,维护两个桶. 分治每次求\( ...

  5. javacpp-FFmpeg系列之1:视频拉流解码成YUVJ420P,并保存为jpg图片

    javacpp-ffmpeg系列: javacpp-FFmpeg系列之1:视频拉流解码成YUVJ420P,并保存为jpg图片 javacpp-FFmpeg系列之2:通用拉流解码器,支持视频拉流解码并转 ...

  6. 排名Top 16的Java实用类库

    (转载: http://www.hollischuang.com/archives/1606) github地址: https://github.com/liufeiSAP/javaStudy.git ...

  7. 解决Visual Code安装中文插件失败问题

    早已听闻Visual Code的大名,今日一用,果然不同凡响. 只不过,我的常用开发环境是不联网的,需要离线安装Visual Code和扩展插件. 以前要安装插件只能从VsCode里装,想离线安装比较 ...

  8. 安装时后的idea,项目不能运行,pom.xml文件不能下载到本地仓库,maven配置是正确的

    安装时后的idea,项目不能运行,pom.xml文件不能下载到本地仓库,maven配置是正确的 项目上传到svn后,同事下载项目后,没有识别出来mavn中的pom.xml文件,导致idea不能自动下载 ...

  9. selenium2获取input输入框中的值的三种方法。

  10. 关于ajaxfileupload的使用方法以及一些问题

    使用问题: 1.ajax-fileupload.js handleError 异常 由于本来handleError方法是jquery的方法,但jquery到了某个版本这个方法就去掉了没有了 所以最简单 ...