群论第一题。

发现这题也是有颜色个数限制的,所以不能用$Polya$,只能用$Burnside$

$L={\frac{1}{|G|}}{\sum_{i=1}^{m}{D(a_{i})}}$

先$dfs$出每个循环节长度,每个循环节颜色需要一样,$dp$就好了。

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#define N 105
using namespace std;
int n,m,mod,na,nb,nc,nn,ans;
int num[N],sum[N],f[N][N][N],fa[N],fac[N];
bool vis[N];
void dfs(int x,int now){
vis[x]=;num[now]++;
if(!vis[fa[x]])dfs(fa[x],now);
}
int qp(int a,int b){
int c=;
while(b){
if(b&)c=c*a%mod;
a=a*a%mod;b>>=;
}
return c;
}
int C(int a,int b){
if(b<||b>a)return ;
if(!b||a==b)return ;
return fac[a]*qp(fac[b],mod-)%mod*qp(fac[a-b],mod-)%mod;
}
int main(){
scanf("%d%d%d%d%d",&na,&nb,&nc,&m,&mod);
n=na+nb+nc;
fac[]=;
for(int i=;i<=;i++)fac[i]=fac[i-]*i%mod;
for(int t=;t<=m;t++){
for(int i=;i<=n;i++)
scanf("%d",&fa[i]);
memset(vis,,sizeof vis);
memset(num,,sizeof num);
memset(f,,sizeof f);
nn=;
for(int i=;i<=n;i++)
if(!vis[i]){
dfs(i,++nn);
sum[nn]=sum[nn-]+num[nn];
}
f[][][]=;
for(int i=;i<=nn;i++){
for(int j=;j<=na;j++){
if(j>sum[i-])break;
for(int k=;k<=nb;k++){
if(j+k>sum[i-])break;
int l=sum[i-]-j-k;
if(l>nc)break;
if(j+num[i]<=na)f[i][j+num[i]][k]+=f[i-][j][k];
if(k+num[i]<=nb)f[i][j][k+num[i]]+=f[i-][j][k];
if(l+num[i]<=nc)f[i][j][k]+=f[i-][j][k];
}
}
}
ans+=f[nn][na][nb];
}
(ans+=C(n,na)*C(n-na,nb))%=mod;
(ans*=qp(m+,mod-))%=mod;
printf("%d\n",ans);
return ;
}

bzoj [HNOI2008]Cards的更多相关文章

  1. bzoj 1004 1004: [HNOI2008]Cards burnside定理

    1004: [HNOI2008]Cards Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1668  Solved: 978[Submit][Stat ...

  2. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

  3. 【BZOJ 1004】 1004: [HNOI2008]Cards (置换、burnside引理)

    1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很 ...

  4. bzoj 1004 Cards

    1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有 多少种染色方案,Sun ...

  5. 【bzoj1004】[HNOI2008]Cards

    1004: [HNOI2008]Cards Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2928  Solved: 1754[Submit][Sta ...

  6. 【BZOJ1004】[HNOI2008]Cards Burnside引理

    [BZOJ1004][HNOI2008]Cards 题意:把$n$张牌染成$a,b,c$,3种颜色.其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$.并且给出$m$个置换,保证这$m$个置 ...

  7. 洛谷 P1446 [HNOI2008]Cards 解题报告

    P1446 [HNOI2008]Cards 题目描述 小春现在很清闲,面对书桌上的\(N\)张牌,他决定给每张染色,目前小春只有\(3\)种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun ...

  8. luogu P1446 [HNOI2008]Cards

    题目链接 luogu P1446 [HNOI2008]Cards 题解 题意就是求染色方案->等价类 洗牌方式构成成了一个置换群 然而,染色数限制不能用polay定理直接求解 考虑burnsid ...

  9. bzoj1004 [HNOI2008]Cards 置换群+背包

    [bzoj1004][HNOI2008]Cards 2014年5月26日5,3502 Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿 ...

随机推荐

  1. 闫燕飞:Kafka的高性能揭秘及优化

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文首发在云+社区,未经许可,不得转载. 大家下午好,我是来自腾讯云基础架构部ckafka团队的高级工程师闫燕飞.今天在这里首先为大家先分享 ...

  2. 细说Web页面与本地电脑通讯

    话说在很久很久以前.Web页面与客户的本地电脑Localhost通讯,有两种方式: 1.Flash 2.ActiveX控件 由于Flash本人不是很了解,也给出不了什么示例代码, 对于ActiveX控 ...

  3. sort list(给链表排序)

    Sort a linked list in O(n log n) time using constant space complexity. 题目要求使用O(nlogn)时间复杂度,可以考虑使用归并排 ...

  4. 数据库面试题目- ORACLE

    Posted on 2009-06-08 17:38 漠北的天空 阅读(110) 评论(0)  编辑 收藏 1.       列举几种表连接方式 Answer:等连接(内连接).非等连接.自连接.外连 ...

  5. J2SE-程序执行与内存图

    全局程序运行内存图 基础数据类型:byte,short,int,long(整数) float,double(浮点)   -- 数值 char                               ...

  6. 开始记录学习java的笔记

    今天开始记录学习java的笔记,加油

  7. jQuery的学习笔记

    JQuery学习笔记 Chapter one初识jQuery 1.2测试jQuery 在jQuery库中,$是jQuery的别名,如:$()相当于jQuery() 注意:在使用JQuery进行开发的时 ...

  8. SOFA 源码分析 — 链路数据透传

    前言 SOFA-RPC 支持数据链路透传功能,官方解释: 链路数据透传功能支持应用向调用上下文中存放数据,达到整个链路上的应用都可以操作该数据. 使用方式如下,可分别向链路的 request 和 re ...

  9. kaggle入门项目:Titanic存亡预测(二)数据处理

    原kaggle比赛地址:https://www.kaggle.com/c/titanic 原kernel地址:A Data Science Framework: To Achieve 99% Accu ...

  10. Socket 异步通信

    最近在写数据通信的时候用到的东西!希望对大家有帮助 /// <summary> /// 获取或设置服务器IP地址 /// </summary> public string se ...