●UOJ 34 多项式乘法
题链:
题解:
FFT入门题。
(终于接触到迷一样的FFT了)
初学者在对复数和单位根有简单了解的基础上,可以直接看《再探快速傅里叶变换》(毛啸)。
(主要用于求两个序列的卷积)
代码:
递归版:
#include<bits/stdc++.h>
#define MAXN 300000
using namespace std;
const double Pi=acos(-1);
struct Z{
double real,image;
Z(double _real=0,double _image=0):real(_real),image(_image){}
Z operator - ()const {return Z(-real,-image);}
friend Z operator + (const Z &A,const Z &B){return Z(A.real+B.real,A.image+B.image);};
friend Z operator - (const Z &A,const Z &B){return A+(-B);}
friend Z operator * (const Z &A,const Z &B){return Z(A.real*B.real-A.image*B.image,A.image*B.real+A.real*B.image);}
};
void FFT(int n,Z *Y,int sn){
if(n==1) return;
Z L[n>>1],R[n>>1];
for(int k=0;k<n;k+=2)
L[k>>1]=Y[k],R[k>>1]=Y[k+1];
FFT(n/2,L,sn); FFT(n/2,R,sn);
Z dw=Z(cos(2*Pi/n),sin(sn*2*Pi/n)),w=Z(1,0),tmp;
for(int k=0;k<n/2;k++,w=w*dw)
tmp=w*R[k],Y[k]=L[k]+tmp,Y[k+n/2]=L[k]-tmp;
}
int main(){
static Z A[MAXN],B[MAXN];
int n,m; scanf("%d%d",&n,&m); n++; m++;
for(int i=0,x;i<n;i++) scanf("%d",&x),A[i]=Z(x,0);
for(int i=0,x;i<m;i++) scanf("%d",&x),B[i]=Z(x,0);
m=n+m-1; for(n=1;n<m;n<<=1);
FFT(n,A,1); FFT(n,B,1);
for(int i=0;i<n;i++) A[i]=A[i]*B[i];
FFT(n,A,-1);
for(int i=0;i<m;i++) printf("%d ",(int)(A[i].real/n+0.5));
return 0;
}
非递归版:
#include<bits/stdc++.h>
#define MAXN 300000
using namespace std;
const double Pi=acos(-1);
struct Z{
double real,image;
Z(double _real=0,double _image=0):real(_real),image(_image){}
Z operator - ()const {return Z(-real,-image);}
friend Z operator + (const Z &A,const Z &B){return Z(A.real+B.real,A.image+B.image);};
friend Z operator - (const Z &A,const Z &B){return A+(-B);}
friend Z operator * (const Z &A,const Z &B){return Z(A.real*B.real-A.image*B.image,A.image*B.real+A.real*B.image);}
};
int order[MAXN];
void FFT(int n,Z *Y,int sn){
for(int i=0;i<n;i++) if(i<order[i]) swap(Y[i],Y[order[i]]);
for(int d=2;d<=n;d<<=1){
Z dw=Z(cos(2*Pi/d),sin(sn*2*Pi/d)),w,tmp;
for(int i=0;w=Z(1,0),i<n;i+=d)
for(int k=i;k<i+d/2;k++,w=w*dw)
tmp=w*Y[k+d/2],Y[k+d/2]=Y[k]-tmp,Y[k]=Y[k]+tmp;
}
}
int main(){
static Z A[MAXN],B[MAXN];
int n,m,len; scanf("%d%d",&n,&m); n++; m++;
for(int i=0,x;i<n;i++) scanf("%d",&x),A[i]=Z(x,0);
for(int i=0,x;i<m;i++) scanf("%d",&x),B[i]=Z(x,0);
m=n+m-1; for(len=0,n=1;n<m;n<<=1) len++;
for(int i=1;i<n;i++) order[i]=(order[i>>1]>>1)|((i&1)<<(len-1));
FFT(n,A,1); FFT(n,B,1);
for(int i=0;i<n;i++) A[i]=A[i]*B[i];
FFT(n,A,-1);
for(int i=0;i<m;i++) printf("%d ",(int)(A[i].real/n+0.5));
return 0;
}
●UOJ 34 多项式乘法的更多相关文章
- [UOJ#34]多项式乘法
[UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...
- UOJ#34. 多项式乘法(NTT)
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- 【刷题】UOJ #34 多项式乘法
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 \(n\) 和 \(m\) ,分别表示两个多项式的次数. 第二行 \(n+1\) 个整数,表示第一个多项式的 \( ...
- UOJ 34 多项式乘法 FFT 模板
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- 2018.11.14 uoj#34. 多项式乘法(ntt)
传送门 今天学习nttnttntt. 其实递归方法和fftfftfft是完全相同的. 只不过fftfftfft的单位根用的是复数中的东西,而nttnttntt用的是数论里面有相同性质的原根. 代码: ...
- 2018.11.14 uoj#34. 多项式乘法(fft)
传送门 NOIpNOIpNOIp爆炸不能阻止我搞oioioi的决心 信息技术课进行一点康复训练. fftfftfft板题. 代码: #include<bits/stdc++.h> usin ...
- UOJ 34 多项式乘法 ——NTT
[题目分析] 快速数论变换的模板题目. 与fft的方法类似,只是把复数域中的具有循环性质的单位复数根换成了模意义下的原根. 然后和fft一样写就好了,没有精度误差,但是跑起来比较慢. 这破题目改了好长 ...
- UOJ 34: 多项式乘法(FFT模板题)
关于FFT 这个博客的讲解超级棒 http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transfor ...
- [UOJ 0034] 多项式乘法
#34. 多项式乘法 统计 描述 提交 自定义测试 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+ ...
随机推荐
- 201621123062《java程序设计》第11周作业总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 思维导图: 2. 书面作业 本次PTA作业题集多线程 2.1. 源代码阅读:多线程程序BounceThread 2 ...
- Ubuntu下安装gsoap
昨天在ubuntu下进行安装gSOAP,费了很多时间,没成功,今天又来找了大量教程资料,终于一次成功,这里写下自己的安装步骤和方法,供大家参考. 首先下载gsoap,我下载的是gsoap-2.8.1. ...
- 玩转Leveldb原理及源码--拙见1
可以说是不知天高地厚.. 可以说是班门弄斧.. 但是,我今天还就这样走了,我喜欢!!!!!! 注:后续文章,限于篇幅,不懂名词都有 紫色+下划线 超链接,有兴趣,可以查阅: 网上关于Leveldb 的 ...
- Flask 学习 八 用户角色
角色在数据库中表示 app/models.py class Role(db.Model): __tablename__='roles' id = db.Column(db.Integer,primar ...
- jav音频格式转换 ffmpeg 微信录音amr转mp3
项目背景: 之前公司开发了一个微信公众号,要求把js-sdk录音文件在web网页也能播放.众所周知,html的<audio>标签ogg,mp3,wav,也有所说苹果safari支持m4a格 ...
- nyoj Mod
Ocean用巧妙的方法得到了一个序列,该序列有N个元素,我们用数组a来记录(下标从0到N−1). Ocean定义f[i]=(((i%a[0])%a[1])%-)%a[N−1]. 现在Ocean会给出Q ...
- 返回到前台的String出现乱码问题
使用springmvc给前天返回String类型的数据出现乱码问题可以在配置环境Spring-mvc.xml中添加如下代码 <mvc:annotation-driven> <mvc: ...
- c# 工具类(字符串和时间,文件)
using System; using System.IO; using System.Text.RegularExpressions; using System.Windows.Browser; n ...
- Linux探索之路1---CentOS入坑笔记整理
前言 上次跟运维去行方安装行内环境,发现linux命令还是不是很熟练.特别是用户权限分配以及vi下的快捷操作.于是决定在本地安装一个CentOS虚拟机,后面有时间就每天学习一点Linux常用命令. 作 ...
- win7远程桌面 连接不上(用户名与全名不匹配的问题)
用户名与用户全名不一致导致的.我刚也是这个问题,折腾够了好久.你先看看 计算机右键→管理→本地用户和组→用户 找到你需要远程的管理员账户,看看名称与全名是否一致,若不一致,继续看下面.1.按" ...