●UOJ 34 多项式乘法
题链:
题解:
FFT入门题。
(终于接触到迷一样的FFT了)
初学者在对复数和单位根有简单了解的基础上,可以直接看《再探快速傅里叶变换》(毛啸)。
(主要用于求两个序列的卷积)
代码:
递归版:
#include<bits/stdc++.h>
#define MAXN 300000
using namespace std;
const double Pi=acos(-1);
struct Z{
double real,image;
Z(double _real=0,double _image=0):real(_real),image(_image){}
Z operator - ()const {return Z(-real,-image);}
friend Z operator + (const Z &A,const Z &B){return Z(A.real+B.real,A.image+B.image);};
friend Z operator - (const Z &A,const Z &B){return A+(-B);}
friend Z operator * (const Z &A,const Z &B){return Z(A.real*B.real-A.image*B.image,A.image*B.real+A.real*B.image);}
};
void FFT(int n,Z *Y,int sn){
if(n==1) return;
Z L[n>>1],R[n>>1];
for(int k=0;k<n;k+=2)
L[k>>1]=Y[k],R[k>>1]=Y[k+1];
FFT(n/2,L,sn); FFT(n/2,R,sn);
Z dw=Z(cos(2*Pi/n),sin(sn*2*Pi/n)),w=Z(1,0),tmp;
for(int k=0;k<n/2;k++,w=w*dw)
tmp=w*R[k],Y[k]=L[k]+tmp,Y[k+n/2]=L[k]-tmp;
}
int main(){
static Z A[MAXN],B[MAXN];
int n,m; scanf("%d%d",&n,&m); n++; m++;
for(int i=0,x;i<n;i++) scanf("%d",&x),A[i]=Z(x,0);
for(int i=0,x;i<m;i++) scanf("%d",&x),B[i]=Z(x,0);
m=n+m-1; for(n=1;n<m;n<<=1);
FFT(n,A,1); FFT(n,B,1);
for(int i=0;i<n;i++) A[i]=A[i]*B[i];
FFT(n,A,-1);
for(int i=0;i<m;i++) printf("%d ",(int)(A[i].real/n+0.5));
return 0;
}
非递归版:
#include<bits/stdc++.h>
#define MAXN 300000
using namespace std;
const double Pi=acos(-1);
struct Z{
double real,image;
Z(double _real=0,double _image=0):real(_real),image(_image){}
Z operator - ()const {return Z(-real,-image);}
friend Z operator + (const Z &A,const Z &B){return Z(A.real+B.real,A.image+B.image);};
friend Z operator - (const Z &A,const Z &B){return A+(-B);}
friend Z operator * (const Z &A,const Z &B){return Z(A.real*B.real-A.image*B.image,A.image*B.real+A.real*B.image);}
};
int order[MAXN];
void FFT(int n,Z *Y,int sn){
for(int i=0;i<n;i++) if(i<order[i]) swap(Y[i],Y[order[i]]);
for(int d=2;d<=n;d<<=1){
Z dw=Z(cos(2*Pi/d),sin(sn*2*Pi/d)),w,tmp;
for(int i=0;w=Z(1,0),i<n;i+=d)
for(int k=i;k<i+d/2;k++,w=w*dw)
tmp=w*Y[k+d/2],Y[k+d/2]=Y[k]-tmp,Y[k]=Y[k]+tmp;
}
}
int main(){
static Z A[MAXN],B[MAXN];
int n,m,len; scanf("%d%d",&n,&m); n++; m++;
for(int i=0,x;i<n;i++) scanf("%d",&x),A[i]=Z(x,0);
for(int i=0,x;i<m;i++) scanf("%d",&x),B[i]=Z(x,0);
m=n+m-1; for(len=0,n=1;n<m;n<<=1) len++;
for(int i=1;i<n;i++) order[i]=(order[i>>1]>>1)|((i&1)<<(len-1));
FFT(n,A,1); FFT(n,B,1);
for(int i=0;i<n;i++) A[i]=A[i]*B[i];
FFT(n,A,-1);
for(int i=0;i<m;i++) printf("%d ",(int)(A[i].real/n+0.5));
return 0;
}
●UOJ 34 多项式乘法的更多相关文章
- [UOJ#34]多项式乘法
[UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...
- UOJ#34. 多项式乘法(NTT)
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- 【刷题】UOJ #34 多项式乘法
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 \(n\) 和 \(m\) ,分别表示两个多项式的次数. 第二行 \(n+1\) 个整数,表示第一个多项式的 \( ...
- UOJ 34 多项式乘法 FFT 模板
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- 2018.11.14 uoj#34. 多项式乘法(ntt)
传送门 今天学习nttnttntt. 其实递归方法和fftfftfft是完全相同的. 只不过fftfftfft的单位根用的是复数中的东西,而nttnttntt用的是数论里面有相同性质的原根. 代码: ...
- 2018.11.14 uoj#34. 多项式乘法(fft)
传送门 NOIpNOIpNOIp爆炸不能阻止我搞oioioi的决心 信息技术课进行一点康复训练. fftfftfft板题. 代码: #include<bits/stdc++.h> usin ...
- UOJ 34 多项式乘法 ——NTT
[题目分析] 快速数论变换的模板题目. 与fft的方法类似,只是把复数域中的具有循环性质的单位复数根换成了模意义下的原根. 然后和fft一样写就好了,没有精度误差,但是跑起来比较慢. 这破题目改了好长 ...
- UOJ 34: 多项式乘法(FFT模板题)
关于FFT 这个博客的讲解超级棒 http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transfor ...
- [UOJ 0034] 多项式乘法
#34. 多项式乘法 统计 描述 提交 自定义测试 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+ ...
随机推荐
- Alpha第五天
Alpha第五天 听说 031502543 周龙荣(队长) 031502615 李家鹏 031502632 伍晨薇 031502637 张柽 031502639 郑秦 1.前言 任务分配是VV.ZQ. ...
- 20162302 实验一《Java开发环境的熟悉》实验报告
实 验 报 告 课程:程序设计与数据结构 姓名:杨京典 班级:1623 学号:20162302 实验名称:Java开发环境的熟悉 实验器材:装有Ubuntu的联想拯救者80RQ 实验目的与要求:1.使 ...
- networkx 学习
import networkx as nx import pylab import numpy as np #自定义网络 row=np.array([,,,,,,]) col=np.array([,, ...
- Mysql 相关操作
1.用户管理 创建用户 create user '用户名'@'IP地址' identified by '密码'; 删除用户 drop user '用户名'@'IP地址'; 修改用户 rename us ...
- Android Notification setLatestEventInfo方法已废弃
代替setLatestEventInfo的方法是用Notification.Builder创建Builder对象,通过该对象设置Notification相关属性. otification.Builde ...
- codves 3044 矩形面积求并
codves 3044 矩形面积求并 题目等级 : 钻石 Diamond 题目描述 Description 输入n个矩形,求他们总共占地面积(也就是求一下面积的并) 输入描述 Input Desc ...
- WebApi 方法的参数类型总结。
1:[HttpGet] ①:get方法之无参数. [HttpGet] public IHttpActionResult GetStudentInfor() { List<StudentMode ...
- Thinkphp框架部署步骤
Thinkphp框架部署步骤 thinkphp框架部署起来简单,但是由于步骤较多也容易遗忘: 这是安装了集成环境后的一个www根目录结构: 然后需要在这个目录下面创建一个文件夹做项目:thinkphp ...
- Python-进程与线程理论基础-Day10
进程与线程理论基础 1.背景知识 理论基础: 一 操作系统的作用: 1:隐藏丑陋复杂的硬件接口,提供良好的抽象接口 2:管理.调度进程,并且将多个进程对硬件的竞争变得有序 二 多道技术: 1.产生背景 ...
- PDF之pdfkit
说起pdf就想到了一款很适用的工具,那就是pdfkit,在前几天的项目中,有一个功能要实现,为了实现这一个功能,于是我大海茫茫中查询各种百科,不负众望的让我找到了我心怡的工具,想必也就是它了.好了废话 ...