[CODEVS 1288]埃及分数
Description
在古埃及,人们使用单位分数的和(形如1/a的, a是自然数)表示一切有理数。 如:2/3=1/2+1/6,但不允许2/3=1/3+1/3,因为加数中有相同的。 对于一个分数a/b,表示方法有很多种,但是哪种最好呢? 首先,加数少的比加数多的好,其次,加数个数相同的,最小的分数越大越 好。 如: 19/45=1/3 + 1/12 + 1/180 19/45=1/3 + 1/15 + 1/45 19/45=1/3 + 1/18 + 1/30, 19/45=1/4 + 1/6 + 1/180 19/45=1/5 + 1/6 + 1/18. 最好的是最后一种,因为1/18比1/180,1/45,1/30,1/180都大。 给出a,b(0<a<b<1000),编程计算最好的表达方式。
Input
a b
Output
若干个数,自小到大排列,依次是单位分数的分母。
Sample Input
19 45
Sample Output
5 6 18
题解
迭代的入门经典题...然而我现在才做...
我们将深度迭代,搜索。
由于要使最小的分数最大,所以我们要边搜的时候记录当前状况下的最优解。
加个$A*$。
我们用估价函数算出枚举分母的范围区间。
注意开$int$会爆。
#include<map>
#include<ctime>
#include<cmath>
#include<queue>
#include<stack>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define LL long long
#define RE register
#define IL inline
using namespace std;
const LL INF=~0u>>; LL keep[],ans[];
LL gcd(LL a,LL b) {return b ? gcd(b,a%b):a;} LL a,b,lim; void Dfs(LL cen,LL x,LL y)
{
if (cen>lim) return;
LL g=gcd(x,y);x/=g;y/=g;
if (x==&&y>keep[cen-])
{
keep[cen]=y;
if (keep[cen]<ans[cen]) memcpy(ans,keep,sizeof(ans));
return;
}
LL s=y/x;
if (keep[cen-]>=s) s=keep[cen-]+;
LL t=y*(lim-cen+)/x;
for (LL i=s;i<=t;i++)
{
keep[cen]=i;
Dfs(cen+,i*x-y,y*i);
}
} int main()
{
scanf("%lld%lld",&a,&b);
for (;;lim++)
{
ans[lim]=INF;
Dfs(,a,b);
if (ans[]>&&ans[]<INF)
{
for (RE LL i=;i<=lim;i++) printf("%lld ",ans[i]);
return ;
}
}
return ;
}
[CODEVS 1288]埃及分数的更多相关文章
- codevs 1288 埃及分数 (迭代加深搜索)
题目大意:给你一个分数$a/b$,把它拆解成$\sum_{i=1}^{n}1/ai$的形式,必须保证$ai$互不相同的情况下,尽量保证n最小,其次保证分母最大的分数的分母最小 什么鬼玄学题!!! 因为 ...
- codevs1288 埃及分数(IDA*)
1288 埃及分数 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 在古埃及,人们使用单位分数的和(形如1/a的 ...
- 埃及分数问题_迭代加深搜索_C++
一.题目背景 http://codevs.cn/problem/1288/ 给出一个真分数,求用最少的1/a形式的分数表示出这个真分数,在数量相同的情况下保证最小的分数最大,且每个分数不同. 如 19 ...
- 华为OJ平台——将真分数分解为埃及分数
题目描述: 分子为1的分数称为埃及分数.现输入一个真分数(分子比分母小的分数,叫做真分数),请将该分数分解为埃及分数.如:8/11 = 1/2+1/5+1/55+1/110. 输入: 输入一个真分数, ...
- 埃及分数&&The Rotation Game&&骑士精神——IDA*
IDA*:非常好用的搜索,可以解决很多深度浅,但是规模大的搜索问题. 估价函数设计思路:观察一步最多能向答案靠近多少. 埃及分数 题目大意: 给出一个分数,由分子a 和分母b 构成,现在要你分解成一系 ...
- UVA12558 Egyptian Fractions (HARD version)(埃及分数)
传送门 题目大意 给出一个真分数 a/b,要求出几个互不相同的埃及分数(从大到小),使得它们之和为 a/b (埃及分数意思是分子为1的分数,详见百度百科) 如果有多组解,则分数数量少的优先 如果分数数 ...
- Vijos 1308 埃及分数(迭代加深搜索)
题意: 输入a.b, 求a/b 可以由多少个埃及分数组成. 埃及分数是形如1/a , a是自然数的分数. 如2/3 = 1/2 + 1/6, 但埃及分数中不允许有相同的 ,如不可以2/3 = 1/3 ...
- JDOJ 1770 埃及分数
JDOJ 1770: 埃及分数 https://neooj.com/oldoj/problem.php?id=1770 Description 分子均为1的分数叫做埃及分数,因为古代埃及人在进行分数运 ...
- 一本通例题埃及分数—题解&&深搜的剪枝技巧总结
一.简述: 众所周知,深搜(深度优先搜索)的时间复杂度在不加任何优化的情况下是非常慢的,一般都是指数级别的时间复杂度,在题目严格的时间限制下难以通过.所以大多数搜索算法都需要优化.形象地看,搜索的优化 ...
随机推荐
- Spring之事务管理的好处
在以往的JDBCTemplate中事务提交成功,异常处理都是通过Try/Catch 来完成,而在Spring中.Spring容器集成了TransactionTemplate,封装了所有对事务处理的功能 ...
- 02_LInux的目录结构_我的Linux之路
前两节已经教大家怎么在虚拟机安装Linux系统 这一节我们来学习Linux的目录结构,讲一下linux的整个系统架构,提前熟悉一下Linux 在Linux或Unix系统中有一个非常重要的概念,就是一切 ...
- 20162311张之睿 Linux基础与Java开发环境实验报告
实验一 Java开发环境的熟悉 实验内容 1.使用JDK编译.运行简单的Java程序: 2.使用Eclipse 编辑.编译.运行.调试Java程序. 实验要求 1.没有Linux基础的同学建议先学习& ...
- The sum of numbers form 0 to n.(20.9.2017)
#include <stdio.h> int main() { int a,b,sum; printf("输入一个数字: "); scanf("%d" ...
- 201621123043 《Java程序设计》第1周学习总结
1. 本章学习总结 Jdk的安装: eclipse的基本使用方法 Java发展史 jdk.jre.jvm 关键词之间的联系:是整个java的核心,包括了一堆java.java基础的类库.java运行环 ...
- 201421123042 《Java程序设计》第14周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结与数据库相关内容. 答: 2. 使用数据库技术改造你的系统 2.1 简述如何使用数据库技术改造你的系统.要建立什么表?截图你的表设计 ...
- 《高级软件测试》web测试实践--12月31日记录
今日的任务进度如上图所示.我们对华科软件学院和计算机学院的网站进行了对比分析,分析的角度包括基本功能分析.前端性能分析.用户调研等.在这里我们简单总结下我们得到的评测结果. 基本功能分析:计算机学院和 ...
- 从PRISM开始学WPF(三)Prism-Region?
从PRISM开始学WPF(一)WPF? 从PRISM开始学WPF(二)Prism? 从PRISM开始学WPF(三)Prism-Region? 从PRISM开始学WPF(四)Prism-Module? ...
- Python 黑客相关电子资源和书籍推荐
原创 2017-06-03 玄魂工作室 玄魂工作室 继续上一次的Python编程入门的资源推荐,本次为大家推荐的是Python网络安全相关的资源和书籍. 在去年的双11送书的时候,其实送过几本Pyth ...
- ORA-12514:TNS:lisntener does not currently know of service requested in connect descriptor
在使用工具连接oracle库的时候出现了异常 根据理解初步估计是服务或者监听器没有启动 于是链接到数据库服务器进行查看 服务都已经开启,重启后链接依旧出现上述问题 使用lsnrctl status ...