Lucas定理


[原文]2017-02-14

[update]2017-03-28


Lucas定理

计算组合数取模,适用于n很大p较小的时候,可以将计算简化到小于p

$ \binom{n}{m} \mod p ,\ p \ is \ prime$

$ n= n_k * p ^ k + n_{k-1} * p^{k-1}+ ... + n_2 * p^2 + n_1 * p + n_0 $

$ m=m_k * p ^ k +m_{k-1} * p^{k-1}+ ... +m_2 * p^2 +m_1 * p+m_0 $

$ \binom{n}{m} = \prod\limits_{i=0}^k \binom{n_i}{m_i} $

证明见参考资料 我不会告诉你我没看的

实现:这个形式很像多项式啊变量为p,n和m迭代/=p然后算C(n%p,m%p)就行了

逆元也可以线性预处理

复杂度,如果忽略阶乘的话,应该是\(O(\log_pN)\)吧

inv[1]=1; fac[0]=facInv[0]=1;
for(int i=1; i<=n; i++) {
if(i!=1) inv[i] = (P-P/i)*inv[P%i]%P;
fac[i] = fac[i-1]*i%P;
facInv[i] = facInv[i-1]*inv[i]%P;
}
ll lucas(int n, int m) {
if(n<m) return 0;
ll ans=1;
for(; m; n/=P, m/=P) ans = ans*C(n%P, m%P)%P;
return ans;
}

扩展Lucas定理

$P \ is \ not \ prime $

\(P\)进行质因子分解,然后对于每个质因子\(p_i^{e_i}\)都得到一个同余方程

$x\equiv a_i\pmod {p_i^{e_i}}\ $

中国剩余定理合并就行了

但是$ \binom{n}{m}\mod p_i^{e_i} $怎么求?

只要计算阶乘就行了,我们分成三部分:

比如:

$ n!=1∗2∗3∗4∗5∗6∗7∗8∗9∗10∗11∗12∗13∗14∗15∗16∗17∗18∗19 \(
\) =(1∗2∗4∗5∗7∗8∗10∗11∗13∗14∗16∗17∗19)∗3^6∗(1∗2∗3∗4∗5∗6) $

假设当前质因子为\(p\),\(p_i^{e_i}=pr\)

第一部分

\(p\)的倍数,有\(\frac{n}{p}\)个,提出\(p\)后形成了新的阶乘,递归解决

第二部分

提出的\(p\) 因为不满足互质没法求逆元,所以放在最后计算\(n!\)中\(p\)出现次数然后分数线 上-下 就行了

计算方法:\(x=\lfloor{n\over p}\rfloor+\lfloor{n\over p^2}\rfloor+\lfloor{n\over p^3}\rfloor+...\)

证明?这不就是这整个求阶乘算法过程产生的数量吗?

第三部分

不是\(p\)的倍数的部分;可以按\(pr\)分块,一共\(\frac{n}{pr}\)块,结果都是相同的;最后一块暴力计算即可

复杂度:计算阶乘模\(p^a\)时复杂度\(O(p^a)\)

ll Pow(ll a,ll b,ll P){
ll ans=1;
for(;b;b>>=1,a=a*a%P)
if(b&1) ans=ans*a%P;
return ans;
}
void exgcd(ll a,ll b,ll &d,ll &x,ll &y){
if(b==0) d=a,x=1,y=0;
else exgcd(b,a%b,d,y,x),y-=(a/b)*x;
}
ll Inv(ll a,ll n){
ll d,x,y;
exgcd(a,n,d,x,y);
return d==1?(x+n)%n:-1;
}
ll Fac(ll n,ll p,ll pr){
if(n==0) return 1;
ll re=1;
for(ll i=2;i<=pr;i++) if(i%p) re=re*i%pr;
re=Pow(re,n/pr,pr);
ll r=n%pr;
for(int i=2;i<=r;i++) if(i%p) re=re*i%pr;
return re*Fac(n/p,p,pr)%pr;
}
ll C(ll n,ll m,ll p,ll pr){
if(n<m) return 0;
ll x=Fac(n,p,pr),y=Fac(m,p,pr),z=Fac(n-m,p,pr);
ll c=0;
for(ll i=n;i;i/=p) c+=i/p;
for(ll i=m;i;i/=p) c-=i/p;
for(ll i=n-m;i;i/=p) c-=i/p;
ll a=x*Inv(y,pr)%pr*Inv(z,pr)%pr*Pow(p,c,pr)%pr;
return a*(MOD/pr)%MOD*Inv(MOD/pr,pr)%MOD;
}
ll Lucas(ll n,ll m){
ll x=MOD,re=0;
for(ll i=2;i<=MOD;i++) if(x%i==0){
ll pr=1;
while(x%i==0) x/=i,pr*=i;
re=(re+C(n,m,i,pr))%MOD;
}
return re;
}

参考资料:http://www.cnblogs.com/jianglangcaijin/p/3446839.html

[Lucas定理]【学习笔记】的更多相关文章

  1. Lucas定理学习笔记

    从这里开始 一个有趣的问题 扩展Lucas算法 一个有趣的问题 题目大意 给定$n, m, p$,求$C_{n}^{m}$除以$p$后的余数. Subtask#1  $0\leqslant m\leq ...

  2. Lucas定理学习笔记(没有ex_lucas)

    题目链接\(Click\) \(Here\) \(ex\_lucas\)实在是不能学的东西...简单学了一下\(Lucas\)然后打算就这样鸽着了\(QwQ\)(奶一口不可能考) 没什么复杂的,证明的 ...

  3. lucas 定理学习

    大致意思就是求组合数C(n , m) % p的值, p为一个偶数 可以将组合数的n 和 m都理解为 p 进制的表示 n  = ak*p^k + a(k-1)*p^(k-1) + ... + a1*p ...

  4. Lucas定理学习小记

    (1)Lucas定理:p为素数,则有: (2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 =  [n/p]*p+a0,m=[m/p]*p+b0其次,我们 ...

  5. Lucas定理学习(进阶中)

    (1)Lucas定理:p为素数,则有: (2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 =  [n/p]*p+a0,m=[m/p]*p+b0其次,我们 ...

  6. lucas定理学习

    Lucas定理是用来求 c(n,m) mod p,p为素数的值. 表达式: C(n,m)%p=C(n/p,m/p)*C(n%p,m%p)%p 当我们遇到求一个N,M很大的组合数的时候,递推法就显得很耗 ...

  7. Burnside引理与Polya定理 学习笔记

    原文链接www.cnblogs.com/zhouzhendong/p/Burnside-Polya.html 问题模型 有一个长度为 $n$ 的序列,序列中的每一个元素有 $m$ 种取值. 如果两个序 ...

  8. Master定理学习笔记

    前言 \(Master\)定理,又称主定理,用于程序的时间复杂度计算,核心思想是分治,近几年\(Noip\)常考时间复杂度的题目,都需要主定理进行运算. 前置 我们常见的程序时间复杂度有: \(O(n ...

  9. Matrix_tree Theorem 矩阵树定理学习笔记

    Matrix_tree Theorem: 给定一个无向图, 定义矩阵A A[i][j] = - (<i, j>之间的边数) A[i][i] = 点i的度数 其生成树的个数等于 A的任意n ...

  10. 生成树计数 Matrix-Tree 定理 学习笔记

    一直都知道要用Matrix-Tree定理来解决生成树计数问题,但是拖到今天才来学.博主数学不好也只能跟着各位大佬博客学一下它的应用以及会做题,证明实在是不会. 推荐博客: https://www.cn ...

随机推荐

  1. linux管理面板

    小编在这儿给大家介绍几款linux管理面板,希望感兴趣的童鞋可以去尝试下.个人觉得宝塔和appnode这两个面板不仅从功能和样式都还是做的比较好的,但是部分功能是收费的,但是webmin绝对是一款免费 ...

  2. angular-dragon-drop.js 双向数据绑定拖拽的功能

    在做公司后台物流的时候,涉及到34个省市分为两个部分,一部分为配送区域,另一部分为非配送区域,想利用拖拽的功能来实现,最好两部分的数组能自动更新. 刚好找到angular-dragon-drop.js ...

  3. 一步一步从原理跟我学邮件收取及发送 5.C语言的socket示例

    说到 C 语言版本的程序,首先要解决的问题就是兼容性. 作为 20 年开发有 10 多年是在服务端的程序员,我深刻地感受到服务端平台的两极分化之严重,linux 派对 windows 那是超级的不屑一 ...

  4. Linux终端连接Linux服务器

    我们经常需要通过类UNIX下连接我们的Linux服务器.比如我的Mac下经常需要连接上Linux服务器.一般系统都提供了ssh支持,可以直接连接: 通过命令: ssh root@120.25.12.9 ...

  5. wamp配置虚拟机步骤

    1.首先修改C:\Windows\System32\drivers\etc下的hosts文件      添加一行 127.0.0.1       myblog.org    //映射到本机 2.然后修 ...

  6. 微软Azure AspNetCore微服务实战第2期

    2018年1月28日,虽然上海的大雪在城区已经见不到踪影,但还是很冷.不过天气再冷,也阻止不了小伙伴参加活动的热情. 感谢王振,苏老师以及微软Azure API Management的产品经理Alvi ...

  7. Spring学习之路三——第一个Spring程序(体会IoC)

    体会IoC:Spring通过一种称作控制反转(IoC)的技术促进了松耦合.当应用了IoC,一个对象依赖的其它对象会通过被动的方式传递进来,而不是这个对象自己创建或者查找依赖对象.你可以认为IoC与JN ...

  8. banner无缝轮播【小封装】

    转载:http://www.qdfuns.com/notes/23446/d1691a1edf5685396813cc85ae6ab10f.html 一直在重复的写banner,写了了好几个,然后每次 ...

  9. JavaScript String(字符串对象)

    String 对字符串的支持 String.charAt( n ) 返回字符串中的第n个字符 n 是下标 String.charCodeAt( ) 返回字符串中的第n个字符的代码 String.con ...

  10. 疑难杂症——关于EntityFramework的SqlQuery方法的执行效率差异的探讨

    前言:最近项目上面遇到一个问题,在Code First模式里面使用EntityFramework的SqlQuery()方法查询非常慢,一条数据查询出来需要10秒以上的时间,可是将sql语句放在plsq ...