Walk

Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1083    Accepted Submission(s): 694
Special Judge

Problem Description
I used to think I could be anything, but now I know that I couldn't do anything. So I started traveling.

The
nation looks like a connected bidirectional graph, and I am randomly
walking on it. It means when I am at node i, I will travel to an
adjacent node with the same probability in the next step. I will pick up
the start node randomly (each node in the graph has the same
probability.), and travel for d steps, noting that I may go through some
nodes multiple times.

If I miss some sights at a node, it will
make me unhappy. So I wonder for each node, what is the probability that
my path doesn't contain it.

 
Input
The first line contains an integer T, denoting the number of the test cases.

For
each test case, the first line contains 3 integers n, m and d, denoting
the number of vertices, the number of edges and the number of steps
respectively. Then m lines follows, each containing two integers a and
b, denoting there is an edge between node a and node b.

T<=20,
n<=50, n-1<=m<=n*(n-1)/2, 1<=d<=10000. There is no
self-loops or multiple edges in the graph, and the graph is connected.
The nodes are indexed from 1.

 
Output
For each test cases, output n lines, the i-th line containing the desired probability for the i-th node.

Your answer will be accepted if its absolute error doesn't exceed 1e-5.

 
Sample Input
2
5 10 100
1 2
2 3
3 4
4 5
1 5
2 4
3 5
2 5
1 4
1 3
10 10 10
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
4 9
 
Sample Output
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.6993317967
0.5864284952
0.4440860821
0.2275896991
0.4294074591
0.4851048742
0.4896018842
0.4525044250
0.3406567483
0.6421630037
 
Source
 
题意:图里面有 n 个点,m条边,然后有一个步数 d,问不经过某个点的概率是多少?到达每个点的概率相同,然后从某个点出发到达所有边上的点的概率相同.输出不到所有点的概率.
题解:dp[i][j]代表 j 步到达第 i 个点不经过某个点的概率,将所有能够不经过这个点到达其他点的概率加起来,也就是某个点的答案了,4层循环进行转移.
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <queue>
#include <string.h>
#include <vector>
using namespace std;
const int INF = ;
int n,m,d;
vector <int> edge[];
double dp[][]; ///dp[i][j] 代表不经过某点第 j 步到达第 i 点的概率,枚举每个点 double solve(int x){
for(int i=;i<=n;i++) dp[i][] = 1.0/n;
for(int i=;i<=d;i++){
for(int j=;j<=n;j++){
if(j==x) continue;
for(int k=;k<edge[j].size();k++){
int v = edge[j][k];
if(v==x) continue;
dp[j][i]+= dp[v][i-]*1.0/edge[j].size();
}
}
}
double ans = ;
for(int i=;i<=n;i++){
if(i!=x) ans= ans+dp[i][d];
}
return ans;
}
int main(){
int tcase;
scanf("%d",&tcase);
while(tcase--){
scanf("%d%d%d",&n,&m,&d);
for(int i=;i<=n;i++) edge[i].clear();
for(int i=;i<=m;i++) {
int u,v;
scanf("%d%d",&u,&v);
if(u==v) continue;
edge[u].push_back(v);
edge[v].push_back(u);
}
for(int i=;i<=n;i++){
memset(dp,,sizeof(dp));
printf("%.10lf\n",solve(i));
}
}
return ;
}

hdu 5001(概率DP)的更多相关文章

  1. HDU 5001 概率DP || 记忆化搜索

    2014 ACM/ICPC Asia Regional Anshan Online 给N个点,M条边组成的图,每一步能够从一个点走到相邻任一点,概率同样,问D步后没走到过每一个点的概率 概率DP  測 ...

  2. hdu 5001 概率DP 图上的DP

    http://acm.hdu.edu.cn/showproblem.php?pid=5001 当时一看是图上的就跪了 不敢写,也没退出来DP方程 感觉区域赛的题  一则有一个点难以想到 二则就是编码有 ...

  3. HDU 4599 概率DP

    先推出F(n)的公式: 设dp[i]为已经投出连续i个相同的点数平均还要都多少次才能到达目标状态. 则有递推式dp[i] = 1/6*(1+dp[i+1]) + 5/6*(1+dp[1]).考虑当前这 ...

  4. hdu 3853 概率dp

    题意:在一个R*C的迷宫里,一个人在最左上角,出口在右下角,在每个格子上,该人有几率向下,向右或者不动,求到出口的期望 现在对概率dp有了更清楚的认识了 设dp[i][j]表示(i,j)到(R,C)需 ...

  5. HDU 4815 概率dp,背包

    Little Tiger vs. Deep Monkey Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K ( ...

  6. hdu 4050(概率dp)

    算是挺简单的一道概率dp了,如果做了前面的聪聪于可可的话,这题不需要什么预处理,直接概率dp就行了... #include <stdio.h> #include <stdlib.h& ...

  7. HDU 4405 (概率DP)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4405 题目大意:飞行棋.如果格子不是飞行点,扔骰子前进.否则直接飞到目标点.每个格子是唯一的飞行起点 ...

  8. hdu 4336 概率dp + 状压

    hdu 4336 小吃包装袋里面有随机赠送一些有趣的卡片,如今你想收集齐 N 张卡片.每张卡片在食品包装袋里出现的概率是p[i] ( Σp[i] <= 1 ), 问你收集全部卡片所需购买的食品数 ...

  9. hdu 4576(概率dp+滚动数组)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4576 思路:由于每次从某一位置到达另一位置的概率为0.5,因此我们用dp[i][j]表示第i次操作落在 ...

随机推荐

  1. python基础---- __getattribute__----__str__,__repr__,__format__----__doc__----__module__和__class__

    目录: 一. __getattribute__ 二.__str__,__repr__,__format__ 三.__doc__ 四.__module__和__class__ 一. __getattri ...

  2. 大自然的搬运工:Ubuntu环境下gedit的一些个简单配置

    gedit是Ubuntu默认的文本编辑器,个人觉得还是不错的,用它来编程写一些小的demo也很方便,原谅我比较菜,vim用起来感觉打字速度真的很慢呀. 下面对gedit做一些简单配置,方便编程. 一. ...

  3. python基础--文件操作实现全文或单行替换

    python修改文件时,使用w模式会将原本的文件清空/覆盖.可以先用读(r)的方式打开,写到内存中,然后再用写(w)的方式打开. 替换文本中的taste 为 tasting Yesterday whe ...

  4. go defer注意点,很容易出错的!!!

    1:defer是在return之前执行的  函数返回的过程是这样的:先给返回值赋值,然后调用defer表达式,最后才是返回到调用函数中 返回值 = xxx 调用defer函数 空的return fun ...

  5. Tensorflow Batch normalization函数

    Tensorflow Batch normalization函数 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 stackoverflow上tensorflow实现BN的不同函数的 ...

  6. expect 批量增加用户及配置密码

    start.sh #!/bin/bash password="111111" username="test" if [ $# == 1 ] then usern ...

  7. Bootstrap笔记-加强版

    1.bootstrap引入: <!DOCTYPE html><html lang="zh-cn"><head><meta charset= ...

  8. 分治法:三维偏序问题之CDQ分治

    我怀疑那个k是用来定界限用的 #include <cstdio> #include <cstring> #include <algorithm> using nam ...

  9. PowerShell入门

    最近需要写个Windows的脚本,以前一直使用cmd.exe来写批处理脚本,这次接触到了PowerShell,准备把学习过程中学到的知识点整理在这里: 相关文章: 1.https://www.cnbl ...

  10. 【洛谷 P3705】 [SDOI2017]新生舞会(费用流,01分数规划)

    题目链接 看到这题我想到了以前做过的一题,名字记不清了,反正里面有"矩阵"二字,然后是道二分图匹配的题. 经典的行列连边网络流. 第\(i\)行和第\(j\)列连边,费用为\(b[ ...