深度学习笔记(一):logistic分类【转】
本文转载自:https://blog.csdn.net/u014595019/article/details/52554582
这个系列主要记录我在学习各个深度学习算法时候的笔记,因为之前已经学过大概的概念,所以这轮学习比较着重于公式推导和具体实现,而对概念上的描述不多,因此比较适合对此有一定基础的同学。
在正式开始写深度学习的知识之前,会有两节传统神经网络的内容,因为深度学习中大量运用了以往神经网络的知识。搞懂传统的神经网络如何工作是很有必要的,有助于对之后的学习打下坚实的基础。
1. logistic分类
几乎所有的教材都是从logistic分类开始的,因为logistic分类实在太经典,而且是神经网络的基本组成部分,每个神经元(cell)都可以看做是进行了一次logistic分类。
所谓logistic分类,顾名思义,逻辑分类,是一种二分类法,能将数据分成0和1两类。
logistic分类的流程比较简单,主要有线性求和,sigmoid函数激活,计算误差,修正参数这4个步骤。前两部用于判断,后两步用于修正。本文分为3部分,前2部分讲普通logistic分类的流程,第三部分则稍作扩展。
1.1 线性求和以及sigmoid函数
第1,2步是用于根据输入来判断分类的,所以放在一起说。假设有一个n维的输入列向量 xx,也有一个n维的参数列向量hh, 还有一个偏置量b, 那么就可以线性求和得到z.
此时因为z的值域是[−∞,+∞][−∞,+∞] ,是无法根据z来判断xx 到底是属于0还是1的。因此我们需要一个函数,来将z的值映射到[0,1]之间, 这就是激活函数。激活函数有很多种,这里的激活函数是sigmoid函数。
其形状为
图1 sigmoid函数
可以看到x越大,σ(x)σ(x)越接近1,反之,则越接近0. 那么在判断的时候,我们首先对之前得到的z代入sigmoid函数
当 a 大于0.5的时候,我们判定x应属于1类,如果小于0.5,则属于0类。这样,就完成了判断的工作
1.2 误差计算以及参数修正
上面完成的判断过程中用到了参数向量h和偏置量b。 可以说,h和b的值直接关系到logistic判断的准确性。那么这两组参数是如何获得的呢?这就涉及到了参数的修正。在最开始的时候,h中的值是随机的,而b的值是0. 我们通过不断的训练来使得h和b能够尽可能的达到一个较优的值。
那么如何训练呢?假设我们期望输入x的判定是y,而实际得到的判定值是a,那么我们定义一个损失函数C(a,y),通过修正h和b的值来使得C最小化,这是一个优化问题。在凸优化问题中,可以通过
来直接算得h和b的最优解。然而在某些情况下,例如数据规模很大,或者非凸优化问题中,则不能这么做,而是用迭代的方法来得到局部最优解。
其中 ηη 表示学习率。在这里,我们把损失函数定为平方损失函数,即C=12(a−y)2C=12(a−y)2 那么可以得到
这样,就能够得到每次迭代的参数更新公式为
1.3 将logistic扩展到多分类
从之前可以看出,普通的logistic只能进行二分类,即只能够分为0或者1。那么如果这些样本属于多个类该怎么办呢?人们想了很多办法,例如一对多法,依次把某个类别的样本归为一类,其他剩余的样本归为另一类,这样k个类需要构建k个分类器。还有一对一法,在任意两类样本之间设计一个分类器,k个类需要k(k-1)/2个分类器。
在这里,我们将输出由一个值更改为一个向量。例如有3个类,那么输出就是一个长度为3 的列向量,对应项的值为1,其他为0.即
分别表示第0,1,2个类。 也可以看成是原来若干个logistic分类器组合在一起。对应的某个分类器只对该类输出1,其他情况都输出0.从这一点上来讲,这个做法有点类似于一对多法。此时,由于输出从一个数成为一个向量,之前的公式都要加以修改。首先,原来的y,a,z,b变成了列向量, 向量hh变成了矩阵W。这样,判断部分的公式变为
此时的σσ函数表示对向量中的每一个元素单独做运算。即
得到的a向量中,其最大值所在的位置索引即为判断出的分类。
参数修正部分的公式也是类似的,
注意有些向量之间是进行点乘的。
深度学习笔记(一):logistic分类【转】的更多相关文章
- UFLDL深度学习笔记 (四)用于分类的深度网络
UFLDL深度学习笔记 (四)用于分类的深度网络 1. 主要思路 本文要讨论的"UFLDL 建立分类用深度网络"基本原理基于前2节的softmax回归和 无监督特征学习,区别在于使 ...
- 机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归
机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归 关键字:Logistic回归.python.源码解析.测试作者:米仓山下时间:2018- ...
- 深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam)
深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 ...
- Google TensorFlow深度学习笔记
Google Deep Learning Notes Google 深度学习笔记 由于谷歌机器学习教程更新太慢,所以一边学习Deep Learning教程,经常总结是个好习惯,笔记目录奉上. Gith ...
- UFLDL深度学习笔记 (二)SoftMax 回归(矩阵化推导)
UFLDL深度学习笔记 (二)Softmax 回归 本文为学习"UFLDL Softmax回归"的笔记与代码实现,文中略过了对代价函数求偏导的过程,本篇笔记主要补充求偏导步骤的详细 ...
- UFLDL深度学习笔记 (六)卷积神经网络
UFLDL深度学习笔记 (六)卷积神经网络 1. 主要思路 "UFLDL 卷积神经网络"主要讲解了对大尺寸图像应用前面所讨论神经网络学习的方法,其中的变化有两条,第一,对大尺寸图像 ...
- UFLDL深度学习笔记 (五)自编码线性解码器
UFLDL深度学习笔记 (五)自编码线性解码器 1. 基本问题 在第一篇 UFLDL深度学习笔记 (一)基本知识与稀疏自编码中讨论了激活函数为\(sigmoid\)函数的系数自编码网络,本文要讨论&q ...
- UFLDL深度学习笔记 (三)无监督特征学习
UFLDL深度学习笔记 (三)无监督特征学习 1. 主题思路 "UFLDL 无监督特征学习"本节全称为自我学习与无监督特征学习,和前一节softmax回归很类似,所以本篇笔记会比较 ...
- UFLDL深度学习笔记 (一)反向传播与稀疏自编码
UFLDL深度学习笔记 (一)基本知识与稀疏自编码 前言 近来正在系统研究一下深度学习,作为新入门者,为了更好地理解.交流,准备把学习过程总结记录下来.最开始的规划是先学习理论推导:然后学习一两种开源 ...
- UFLDL深度学习笔记 (七)拓扑稀疏编码与矩阵化
UFLDL深度学习笔记 (七)拓扑稀疏编码与矩阵化 主要思路 前面几篇所讲的都是围绕神经网络展开的,一个标志就是激活函数非线性:在前人的研究中,也存在线性激活函数的稀疏编码,该方法试图直接学习数据的特 ...
随机推荐
- 160426、JavaScript 秘密花园
简介 关于作者 这篇文章的作者是两位 Stack Overflow 用户, 伊沃·韦特泽尔 Ivo Wetzel(写作) 和 张易江 Zhang Yi Jiang(设计). 贡献者 贡献者 中文翻译 ...
- Hibernate中双向的一对多关系
何为双向,双向的意思就是你我之间可以互相通信(customer(1)和order(n)) 也就是说customer可以访问order,order也可以访问customer 二者构成了双向的关系 在Hi ...
- Android ImageView 获取图片信息后进行比较
ImageView a=(ImageView)findViewById(R.id.imageView2); //获取当前图片ConstantState类对象 Drawable.ConstantStat ...
- ObjectId
BSON Types — MongoDB Manual https://docs.mongodb.com/manual/reference/bson-types/#objectid ObjectId ...
- Linux下安装谷歌访问助手,解压缩时出现中文乱码
1.sudo apt-get install unar 安装unar 2.unar 谷歌访问助手chrome版本.zip 注意:使用 lsar 命令可以查看压缩文件内有那些文件: 例:lsar 谷 ...
- d3.js:数据可视化利器之 selection:选择集
选择集/selection 选择集/selection是d3中的核心对象,用来封装一组从当前HTML文档中选中的元素: d3提供了两个方法用来创建selection对象: select(selecto ...
- SqueezeNet
虽然网络性能得到了提高,但随之而来的就是效率问题(AlexNet VGG GoogLeNet Resnet DenseNet) 效率问题主要是模型的存储问题和模型进行预测的速度问题. Model Co ...
- web前端 微信支付之H5支付
一.什么是微信H5支付? 微信,简直是21世纪的社交产品之最.人们的生活已经离不开它,因为它的触角广泛蔓延像一张巨大无形的网,从而让我们的生活更加便捷高效,这款社交工具我们不做过多评价,但是我们要通过 ...
- 具体解释linux下的串口通讯开发
串行口是计算机一种经常使用的接口,具有连接线少.通讯简单,得到广泛的使用.经常使用的串口是RS-232-C接口(又称EIA RS-232-C)它是在1970年由美国电子工业协会(EIA)联合贝尔系统. ...
- 赵雅智_ListView_ArrayAdapter
ArrayAdapter六种构造方法的作用 ArrayAdapter<T>(Context context, int textViewResourceId); 上下文,布局文件 Array ...